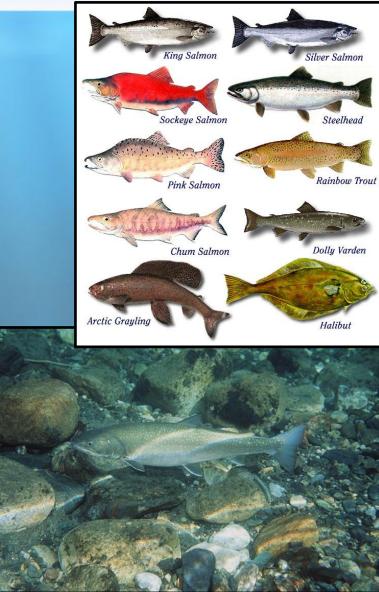
Fisheries Studies: Beyond the Guidelines

(for Hydroelectric & Mining Projects)

Cory Bettles, M.Sc., R.P.Bio., CFP & Isabelle Girard, M.Sc., R.P.Bio., CFP

EMA of BC Workshop - February 21, 2013

Components of EA Studies


- Baseline studiesImpact Assessment
 - Fisheries
 - Other aquatic life
 - Geology
 - Hydrology
 - Hydrogeology
 - Water Quality
 - Climate
 - Air Quality
 - = Etc.

Components of Fisheries Studies

- Species diversity
- Abundance
- Species at risk
- Life history strategies
- Distribution
- Population dynamics
- Habitat quality & quantity
- Instream Flow Needs (IFN)
- Etc.

Guidelines

 There are numerous provincial and federal guidelines that are used in British Columbia to guide fisheries studies related to EIAs

Why are guidelines needed?

- Impose specific criteria
- Increase scientific rigor
- Standardize methodology and results for comparison purposes

Federal Guidelines

Long-Term Aquatic Monitoring Protocols for New and Upgraded Hydroelectric Projects

Prepared for:

Fisheries and Oceans Canada

July 2012

Prepared by: F.J. Adam Lewis, M.Sc., R.P.Bio.¹, Andrew J. Harwood, Ph.D., R.P.Bio., Cory Zyla, M.Sc., Kevin D. Ganshom, M.Sc., and Todd Hatfield, Ph.D., R.P.Bio

Ξ

Ecofish Research Ltd.

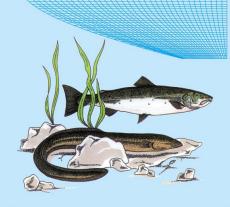
¹ Certifying professional

Science Directorate Central and Arctic Region Department of Fisheries and Oceans Winnipeg, Manitoba R3T 2N6

D.G. Wright and G.E. Hopky

and

Habitat Management & Environmental Science Directorate Department of Fisheries and Oceans Ottawa, Ontario K1A 0E6


Guidelines for the Use of Explosives

In or Near Canadian Fisheries Waters

1998

Canadian Technical Report of Fisheries and Aquatic Sciences 2107 Department of Fisheries and Oceans

Freshwater Intake End-of-Pipe Fish Screen Guideline

Fisheries Péches and Oceans et Océans Canada

Environment Environnement Canada Canada

METAL MINING TECHNICAL GUIDANCE FOR ENVIRONMENTAL EFFECTS MONITORING

2012

Canada

Provincial Guidelines

Guidelines for the collection and analysis of fish and fish habitat data for the purpose of assessing impacts from small hydropower projects in British Columbia

Prepared by: Todd Hatfield Solander Ecological Research Ltd. Victoria BC

> Adam Lewis EcoFish Research Ltd. Courtenay BC

Scott Babakaiff BC Ministry of Environment Surrey BC

March 9, 2007

Assessment Methods for Aquatic Habitat and Instream Flow Characteristics in Support of Applications to Dam, Divert, or Extract Water from Streams in British Columbia

Final Version

Prepared for:

Ministry of Water, Land & Air Protection and Ministry of Sustainable Resource Management

Prepared by:

Adam Lewis Ecofish Research, Denman Island, BC

Todd Hatfield Solander Ecological Research, Victoria, BC

Barry Chilibeck Northwest Hydraulic Consultants, North Vancouver, BC

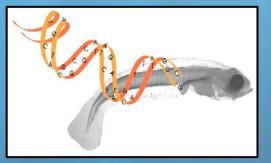
Cedric Roberts CBR and Associates, Nanaimo, BC

March 2004

Water and Air Baseline Monitoring Guidance Document for Mine Proponents and Operators

Prepared by the Ministry of Environment

October 9, 2012


1

The "Perception" of Guidelines

Viewed as status quo

Best science available

Provide all the data necessary for approval

Site Name	Trap No.	Date Set (dd/mm/yy)	Time Set (HH:MM)	Date Lifted (dd/mm/yy)	Time Lifted (HH:MM)	Water depth (m)	Latitude	Longitude	Sample #	Species	TL (mm)	Weight (g)	Sacrificed (Y/N)
Rive1	1	07/31/2011	14:30	2011/08/01	15:15	0.80	15 W 572791	7392766	1	Slimy Sculpin	102	9.1	N
Rive1	1	07/31/2011	14:30	2011/08/01	15:15	0.80	15 W 572791	7392766	2	Slimy Sculpin	107	10.2	Ν
Rive1	2	07/31/2011	14:30	2011/08/01	15:15	0.80	15 W 572791	7392766	3	Slimy Sculpin	105	8.8	Ν
Rive1	2	07/31/2011	14:30	2011/08/01	15:15	0.80	15 W 572791	7392766	4	Slimy Sculpin	91	5.5	Ν
Rive1	3	07/31/2011	14:30	2011/08/01	15:15	0.80	15 W 572791	7392766	5	Slimy Sculpin	67	2.1	Ν

The "Reality" of Guidelines

- Living documents (must be updated continually)
- Based on science that has inherent assumptions and limitations
- May not address all data needs for all projects
- Should be flexible in their current state based on project footprint, study objectives, stakeholder issues, and environmental conditions
- New ideas should be encouraged and embraced

e.g. "Data collected to support a water license application should meet or exceed existing inventory standards" (Lewis et al. 2004)

Use of Guidelines

Professional accountability

e.g. "Data collected to support a water license application…should be signed off by a fisheries biologist with a professional designation of R.P.Bio. and demonstrated experience with instream flow assessments" (Lewis et al. 2004)

Consultants hired by proponents

Regulators reviewing the EIAs

Risks associated with verbatim use or misuse of Guidelines

- Insufficient baseline data
- Unacceptable accuracy and precision of baseline data
- Inappropriate or incomplete methodology
- Errors with interpretation of baseline results
- Misinterpretation of impact assessment findings
- Stumbling blocks in receiving project permits
- Increase in project timelines and cost

"Going Beyond" the Guidelines

Example 1

 Fish habitat models within provincial hydroelectric guidelines

 Genetic studies within provincial hydroelectric and mining guidelines Assessment Methods for Aquatic Habitat and Instream Flow Characteristics in Support of Applications to Dam, Divert, or Extract Water from Streams in British Columbia

Final Version

Ministry of Water, Land & Air Protection and Ministry of Sustainable Resource Management

Prepared by:

Adam Lewis Ecofish Research, Denman Island, BC

Todd Hatfield Solander Ecological Research, Victoria, BC

Barry Chilibeck Northwest Hydraulic Consultants, North Vancouver, BC Cedric Roberts CBR and Associates, Nanaimo, BC

Water and Air Baseline Monitoring Guidance Document for Mine Proponents and Operators

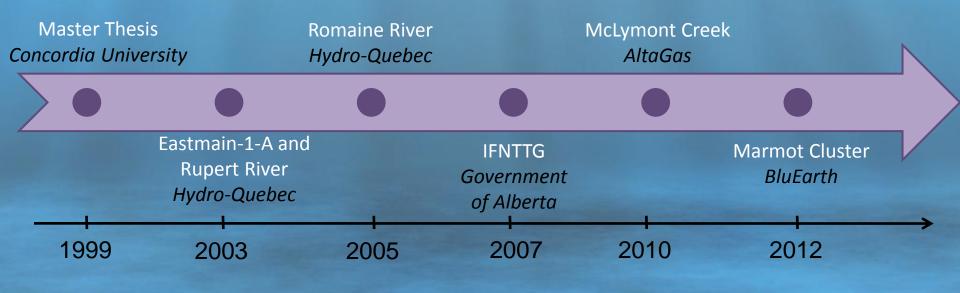
Prepared by the Ministry of Environment

October 9, 2012

Questions?

Example 1

Fish Habitat Models within the Provincial Hydroelectric Guidelines


Isabelle Girard, M.Sc., R.P.Bio., CFP*

* Certified Fisheries Professional, American Fisheries Society

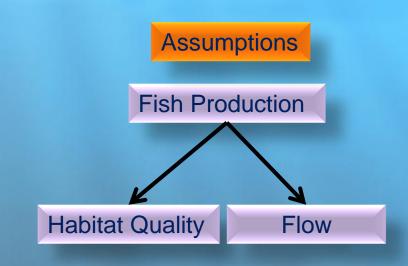
Professional Experience

- B.Sc. and M.Sc., Concordia University, Qc
- Master's thesis: Fish habitat modeling of Atlantic Salmon in a New Brunswick stream
- Numerous studies related to fish habitat modeling and IFN

Instream Flow Needs (IFN)

"Amount of water needed in a stream/river to adequately provide for downstream uses occurring within the stream channel (e.g., aquatic resources, navigation, human consumption)"

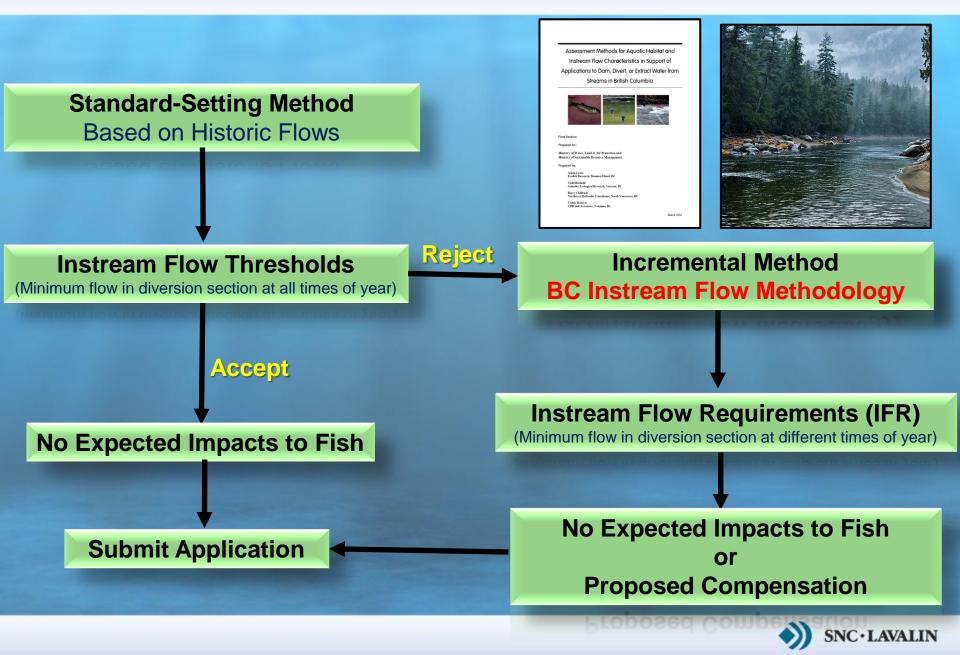
Typical run-of-river hydroelectric project

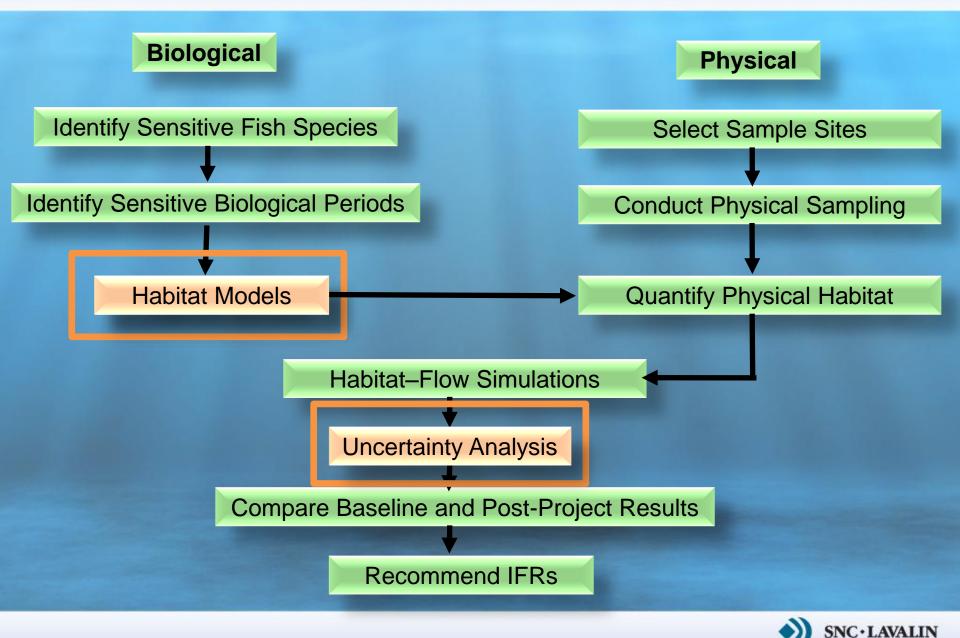


IFN Assessments

Standard-Setting Methods

- e.g., Tennant, Wetted Perimeter
- Simpler
- Requires little data
- Desktop


Incremental Methods


- Instream Flow Incremental Methodology (IFIM)
- e.g., PHABSIM, MESOHABSIM
- More complex
- Data intensive (e.g., hydrology and fish habitat data)
- Field and Desktop

IFN Assessments in BC – Current Guidelines

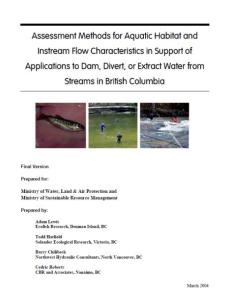
BC Instream Flow Methodology

What is a Habitat Model?

A mathematical equation that allows scientists to "represent animal habitat quality in relation to animal presence or reproductive success" (USGS, 2012)

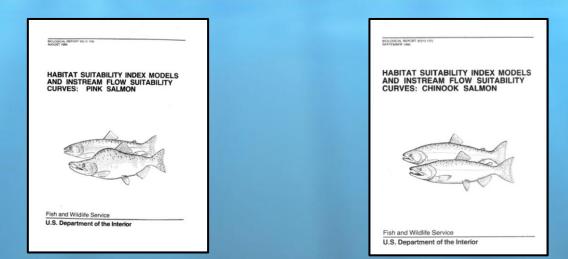
$$\ln(1+1000 \ d_k) = a + \sum_{j=1}^{j=5} a_{1j} \cdot w_{1jk} + \sum_{j=1}^{j=4} a_{2j} \cdot w_{2jk}$$

Table I. Habitat use model coefficients deriv	ed using Equation (7) for barbel and chub
---	---

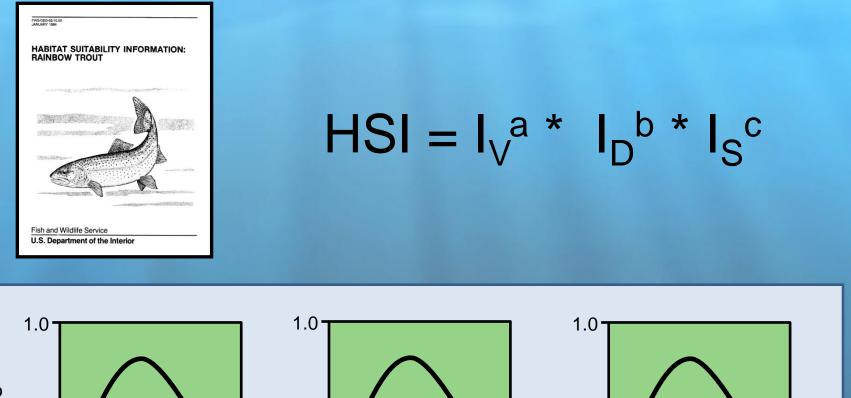

Species	а	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	<i>a</i> ₁₄	<i>a</i> ₁₅	<i>a</i> ₂₁	<i>a</i> ₂₂	<i>a</i> ₂₃	a ₂₄
Barbel Chub	$-0.22 \\ 3.37$				$1.78 \\ -2.68$					

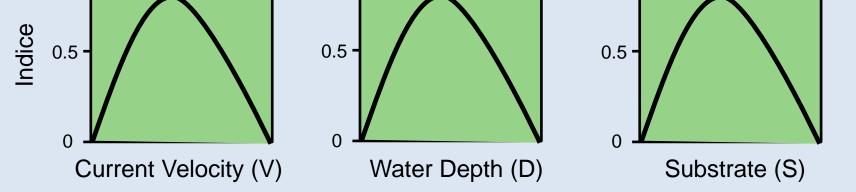
Lamoureux et al. 1998

Habitat Models – Current Guidelines


- Primarily endorse the use of existing Habitat Suitability Index (HSI) models
- Positives
 - Simpler mathematics
 - Used for decades
 - No collection of biological data
- Negatives

- Assume that HSI models are correct in their predictions of fish distribution in the streams under study
- Assume that models can be used indiscriminately among streams in BC


Habitat Models – Current Guildelines



- 57 HSI models developed by the U.S. Fish and Wildlife Service in the early 1980s
- Available on the National Wetlands Research Center (NWRC) of the U.S. Geological Survey (USGS) Website
- Models for some species have been refined for BC (available through MoE)

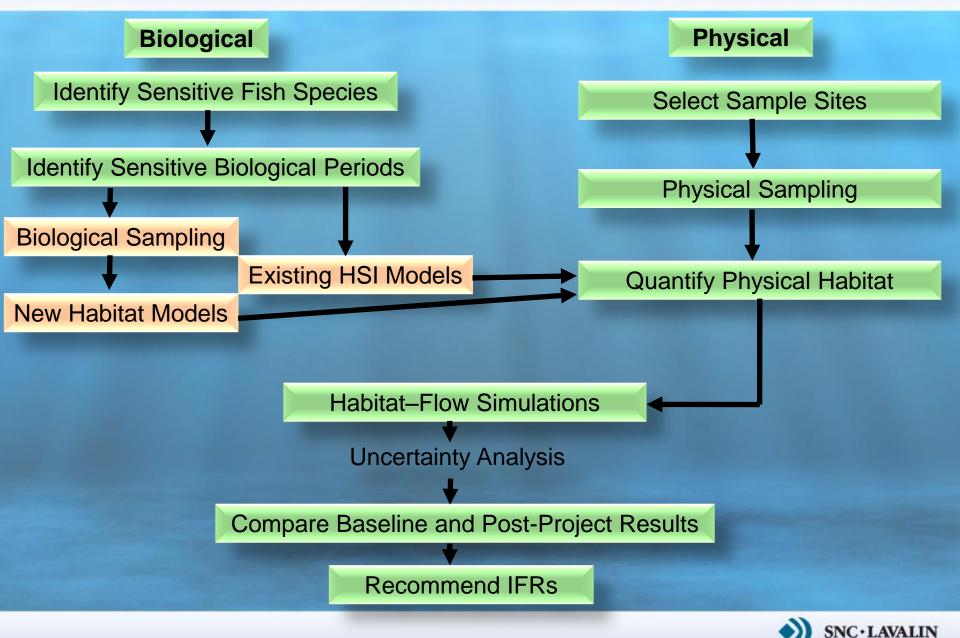
What is an HSI Model?

"Going Beyond" the Guidelines

Our Recommendations

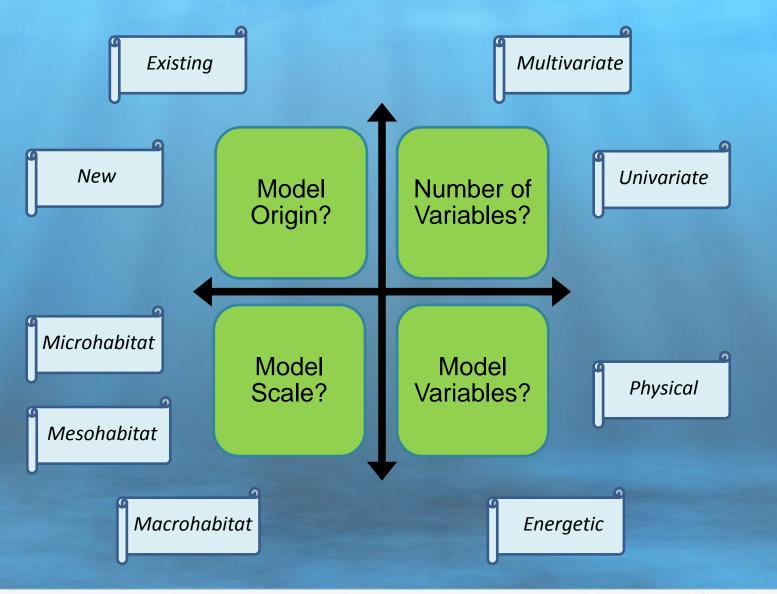
Use existing HSI fish habitat models

- Develop new site-specific fish habitat models
- Explore the use of other types of habitat models (e.g., HPI)
- Compare the results of IFN between existing HSI models and new models



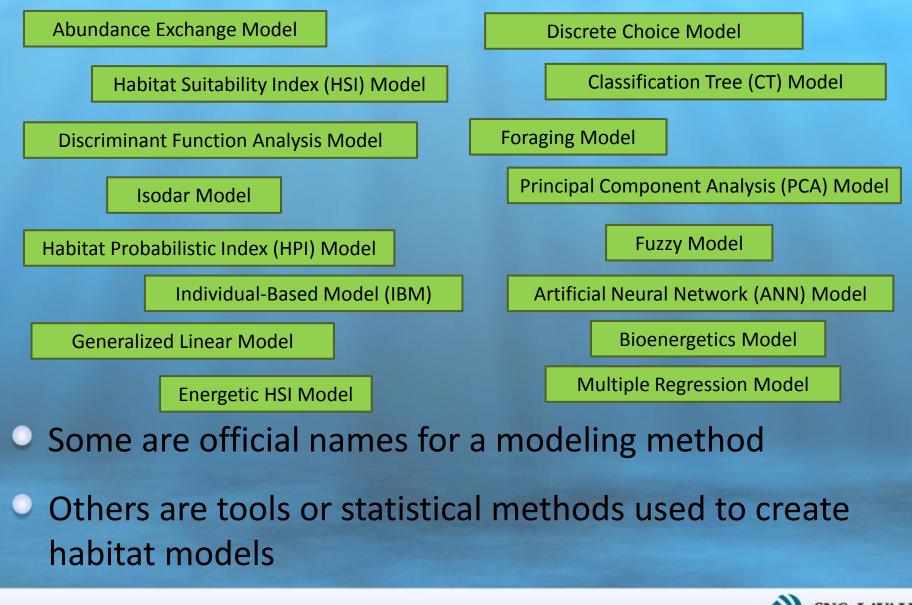
BC Instream Flow Methodology

Improved BC Instream Flow Methodology



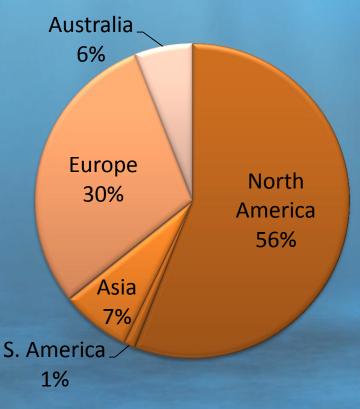
Why?

1. Several habitat modeling methods are available



Fish Habitat Models – Other Possibilities

Fish Habitat Models – Other Possibilities


Why?

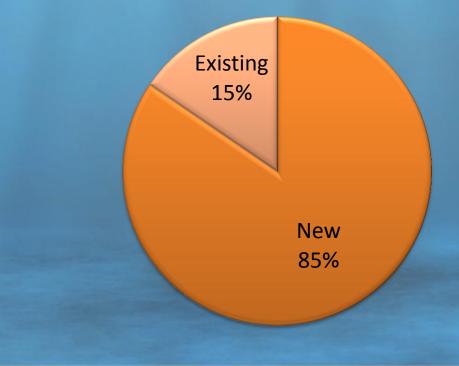
2. Other habitat models have increased in popularity

Habitat Models in Literature

What models are use predominantly in literature?
 Literature review of 84 published and/or professional documents

Habitat Models in Literature

- Only 29% of studies used exclusively HSI
- Decrease in exclusive use of HSI models
- Potential explanations:
 - Increase in mathematical abilities among biologists
 - HSI model performance issues


Why?

3. New habitat models are more prevalent

Existing Versus New Habitat Models

- Only 15% of studies used existing models
- Potential explanations:
 - Existing models may not transfer well from one geographical location to another

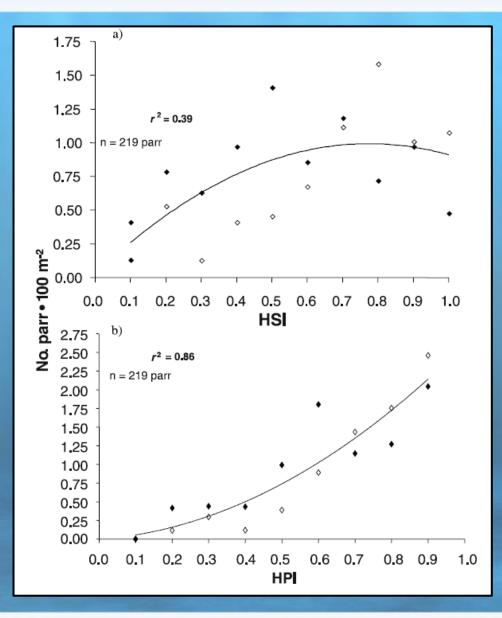
Why?

4. Other habitat models can outperform HSI models

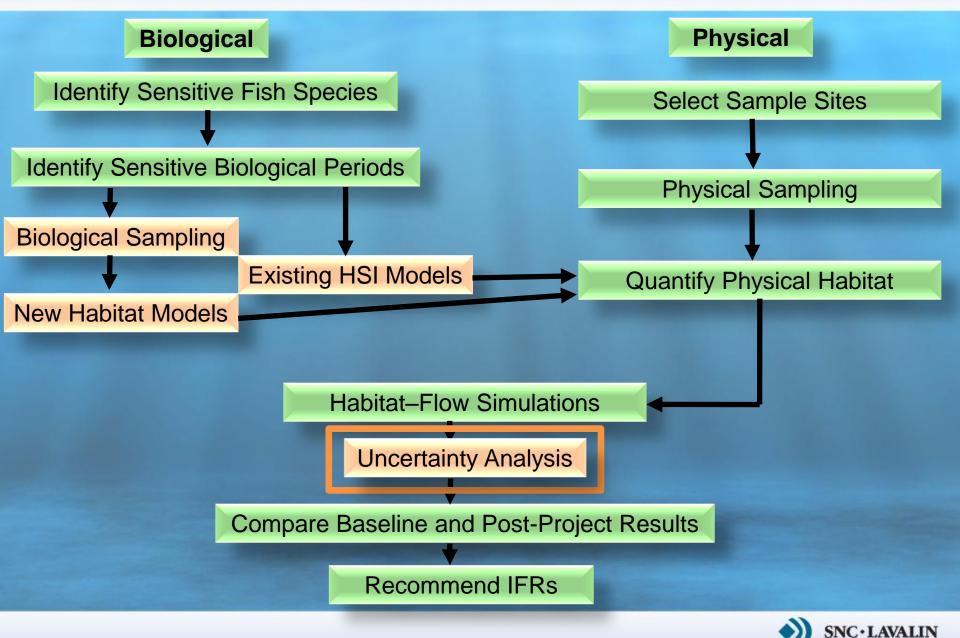
Example – Guay et al. 2000

- Developed new habitat models (HSI and HPI) for juvenile Atlantic Salmon
- Sainte-Marguerite River, Quebec

HSI Model


 $HSI = I_V^{0.38} * I_D^{0.30} * I_S^{0.32}$

HPI = 1/ (1+ $e^{-\lambda}$) $\lambda = (-3.067 + 8.461*D + 2.86*V + 0.093*S - 6.203*D^2)$



HPI Outperformed the HSI Model

Improved BC Instream Flow Methodology

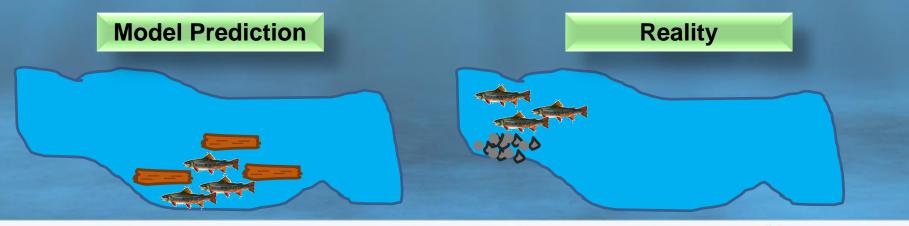
Uncertainty Analysis – Current Guidelines

- Accuracy and precision of habitat models are not addressed
- Impacts of habitat modeling uncertainty on instream flow needs are not estimated
- Positives
 - Less intensive analysis
 - No collection of biological data
- Negatives
 - Assume that HSI models are correct in their predictions of fish distribution in the streams under study
 - Assume that models can be used indiscriminately among streams in BC

March 200-

Barry Childbeck Northwett Hydraulic Consultants, North Vancouver, BC

Cedric Roberts CRR and Associates, Nanaimo, BC


Assessment Methods for Aquatic Habitat and Instream Flow Characteristics in Support of

Accuracy

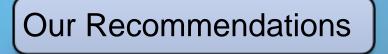
"Degree of closeness of measurements of a quantity to that quantity's actual true value" (NDT, 2011)

- "Validation" of habitat models
- Determine the success of models in predicting fish distribution
- Should be a crucial element of all modeling work

Precision

"Degree to which repeated measurements under changed conditions (e.g., observer, settings) show the same results" (NDT, 2011)"

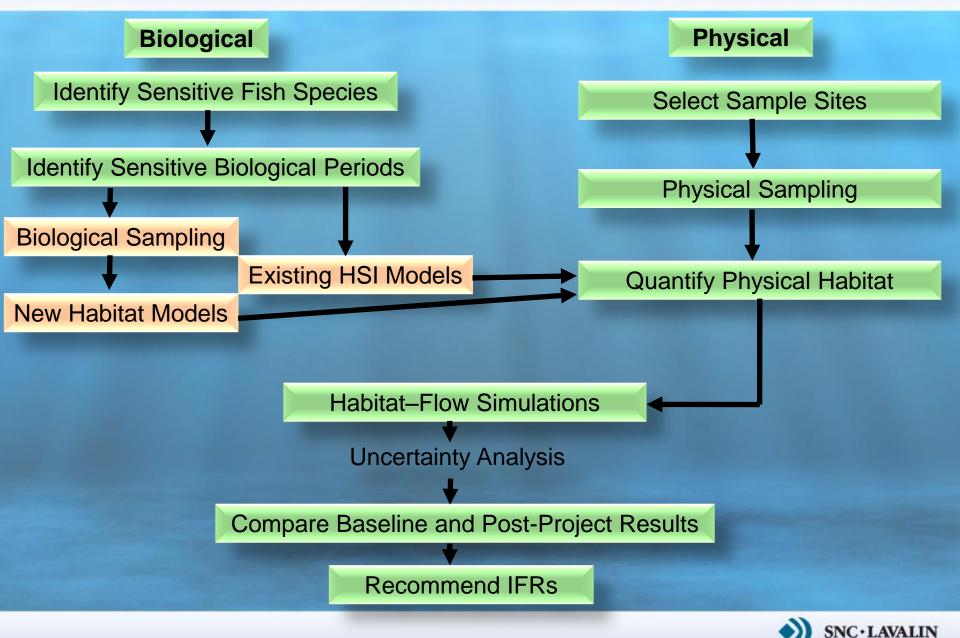
- Also called "Repeatability"
- Different ways to estimate precision
- E.g., Sensitivity analysis
 - Reshuffling original dataset into numerous new datasets
 - Rerun analyses on new datasets
 - Compare results of original dataset with results of new datasets

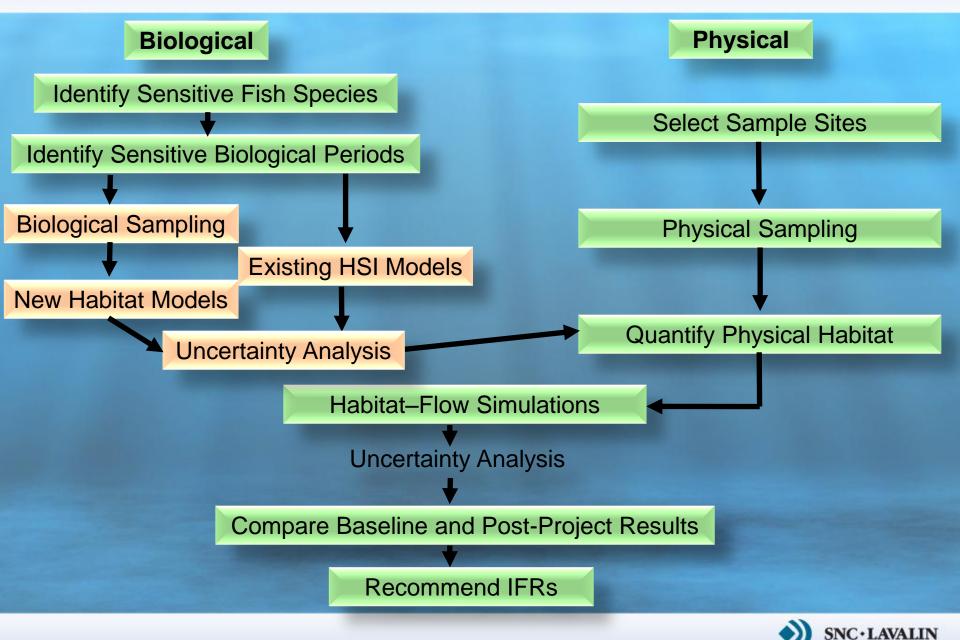


Accuracy & Precision

	Accurate	Inaccurate
Precise		
Imprecise		

"Going Beyond" the Guidelines



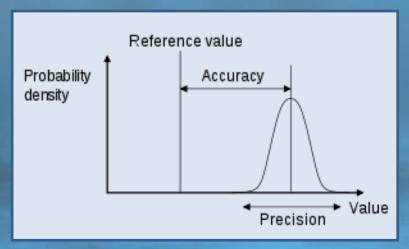

- Determine the accuracy and precision of all habitat models used within the BC IFN methodology
- Determine the impact of habitat modeling uncertainty on instream flow needs

Improved BC Instream Flow Methodology

Our Recommendation

Why?

1. To adhere to good mathematical practices

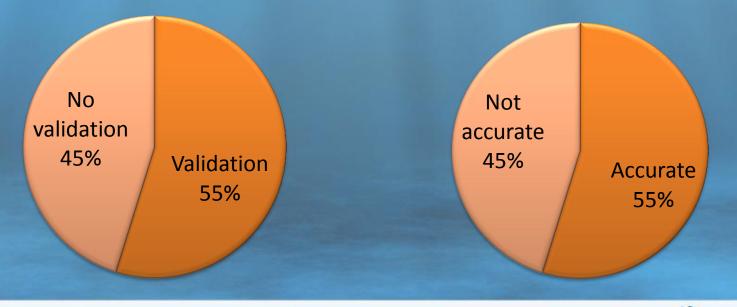


Good mathematical practices

When interpreting data and drawing conclusions, one should always provide measures of the uncertainty associated with the data

e.g. "The greatest single constraint to the proper implementation of IFN analysis is the use of accurately derived habitat models. Use of models that do not accurately characterize the utilized or preferred habitat for a species can cause significant error" in predictions (Hudson et al. 2003)"

 Goal is to obtain high precision and accuracy of results


Why?

2. Accuracy estimates are prevalent in numerous fish habitat modeling studies

Accuracy of Habitat Models in Literature

- Over 55% of studies conducted a validation of fish habitat models
- Around 45% of models do not validate (are not accurate in predicting fish distribution)
- Potential explanations:
 - Other variables may be responsible for habitat selection

Why?

2. Precision estimates, although rare, are increasing in popularity

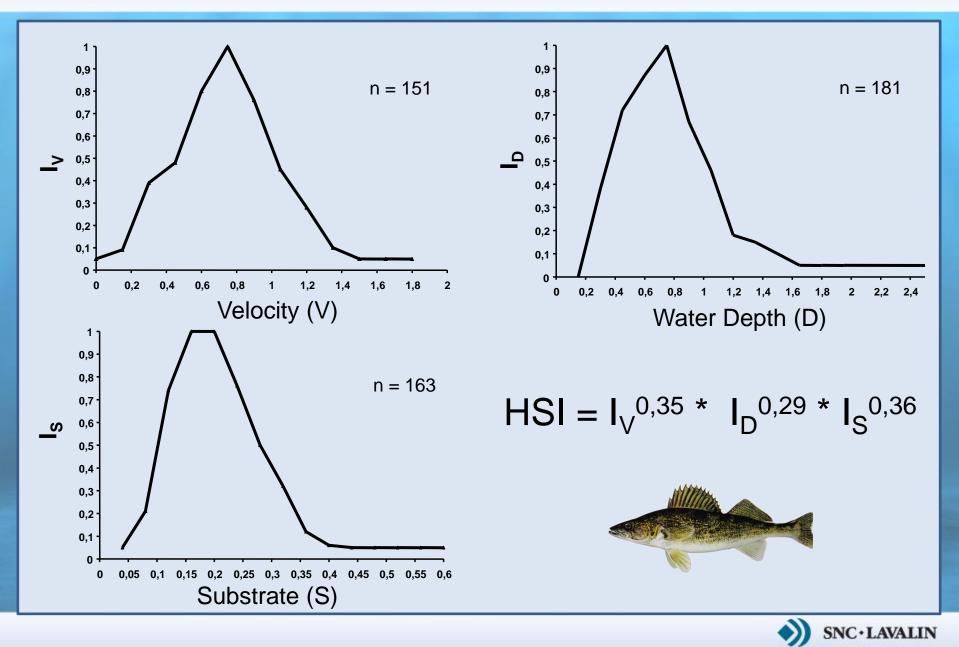
Precision of Habitat Models in Literature

- Only 13% of studies estimated the precision of fish habitat models
- Potential explanations:
 - Complex mathematics involved
 - Timing and budget constraint
- Slight increase in reporting of precision for fish habitat modeling studies

Why?

4. Precision and accuracy can show which habitat models should be used for IFN assessments

Example – Uncertainty of Habitat Models in an EIA

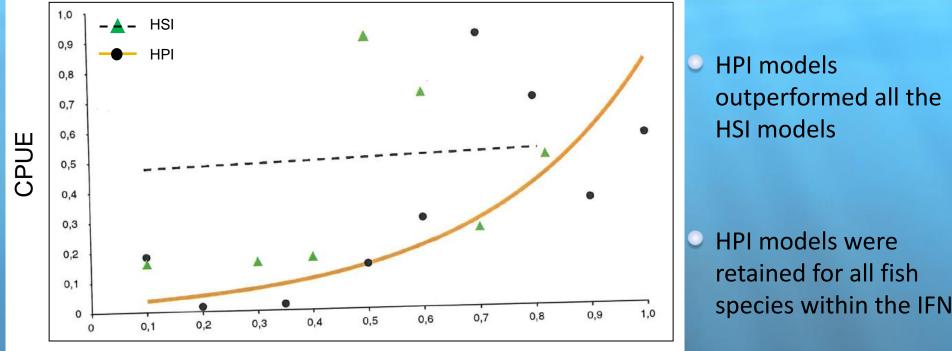

- James Bay, Quebec
- 918 MW hydroelectric Project on the Rupert River

- IFN used to determine ecological minimal flows downstream of the dam
- Developed new HSI and HPI habitat models for numerous fish species
- Conducted a validation on all habitat models
- Estimated the Precision of all habitat models and the impact of that uncertainty on the Instream Flow Needs

New HSI Models

New HPI Models

HPI = $1/(1 + e^{-\lambda})$


 $\lambda = (-2,30 + 2,24*D - 0,30*D^2 - 3,82*V + 15,46*F - 0,02*\%Cobble + 0,02*\%Gravel)$

Variable	HPI
Depth (D)	+
Depth ² (D ²)	-
Velocity (V)	-
Velocity ²	N/A
% Boulder	N/A
% Cobble	_
% Pebble	N/A
% Gravel	+
% Sand	N/A
% Silt	N/A
Froude (F)	+
Precision of predictions (%)	66.4

Accuracy of Fish Habitat Models

Habitat Quality Indice

Regression Type	HS	SI	HPI					
	r ²	Р	r ²	Р				
Linear	0.33	0.13	0.77	0.002				
Quadratic	0.36	0.33	0.85	0.004				
Exponential	0.43	0.08	0.67	0.007				

Precision of Retained Fish Habitat Models

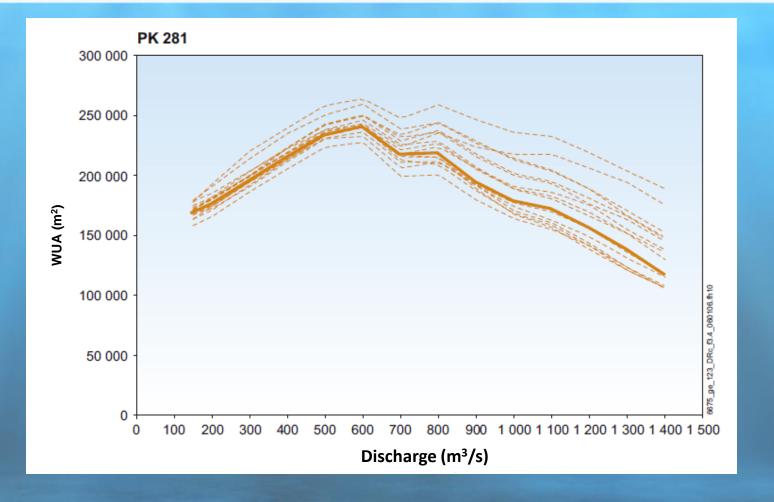
- Bootstrap Technique: Random resampling of 80% of the data to create 15 new datasets
- Create 15 HPI sub models

2 $\lambda = [-2,393 + ($	2,522 * P) - (0,325* P ²) - (4,383 * V) + (16,466* F) - (0,015 * % galet) + (0,025 * % gravier)] 2,587 * P) - (0,346* P ²) - (4,616 * V) + (17,591* F) - (0,018 * % galet) + (0,014 * % gravier)]	χ ² 31,21	6	< 0,001
2 $\lambda = [-2,393 + ($			-	
		25,69	6	< 0,001
5 A = [-2,013 + [2,161 * P) - (0,316* P ²) - (2,702 * V) + (11,382* F) - (0,018 * % galet) + (0,019 * % gravier)]	22,75	6	0,001
	1,754 * P) - (0,239* P ²) - (2,138 * V) + (9,795* F) - (0,021 * % galet) + (0,025 * % gravier)]	26,72	6	< 0,001
5 $\lambda = [-2,502 + ($	2,154 * P) - (0,277* P²) - (3,501 * V) + (16,238* F) - (0,019 * % galet) + (0,02 * % gravier)]	33,49	6	< 0,001
6 $\lambda = [-2,52 + (2$	355 * P) - (0,309* P ²) - (3,749 * V) + (15,363* F) - (0,017 * % galet) + (0,027 * % gravier)]	28,01	6	< 0,001
7 $\lambda = [-1,89 + (2$	172 * P) - (0,317* P²) - (2,848 * V) + (12,385* F) - (0,021 * % galet) + (0,01 * % gravier)]	22,85	6	0,001
8 $\lambda = [-2,885 + ($	2,453 * P) - (0,314* P ²) - (4,804 * V) + (19,89* F) - (0,012 * % galet) + (0,022 * % gravier)]	29,65	6	< 0,001
9 $\lambda = [-2,354 + ($	2,463 * P) - (0,323* P ²) - (4,668 * V) + (18,643* F) - (0,019 * % galet) + (0,011 * % gravier)]	27,92	6	< 0,001
10 $\lambda = [-2,495 + ($	2,302 * P) - (0,276* P ²) - (4,606 * V) + (17,943* F) - (0,014 * % galet) + (0,02 * % gravier)]	29,30	6	< 0,001
11 $\lambda = [-2, 113 + ($	2,042 * P) - (0,279* P ²) - (3,09 * V) + (13,561* F) - (0,02 * % galet) + (0,021 * % gravier)]	28,07	6	< 0,001
12 $\lambda = [-2,424 + ($	2,352 * P) - (0,304* P²) - (4,244 * V) + (16,749* F) - (0,019 * % galet) + (0,023 * % gravier)]	33,60	6	< 0,001
13 $\lambda = [-2,082 + ($	2,154 * P) - (0,3* P ²) - (2,939 * V) + (11,978* F) - (0,016 * % galet) + (0,019 * % gravier)]	22,48	6	0,001
14 $\lambda = [-1,659 + ($	1,861 * P) - (0,247* P²) - (2,757 * V) + (14,182* F) - (0,03 * % galet) + (0,006 * % gravier)]	27,50	6	< 0,001
15 $\lambda = [-2,073 + ($	2,145 * P) - (0,282* P ²) - (3,621 * V) + (15,107* F) - (0,02 * % galet) + (0,013 * % gravier)]	22,97	6	0,001

Sub Model		Absence (Nb.)	Presence (Nb.)	Precision of predictions
1	Absence (N ^{bro} = 88) Présence (N ^{bro} = 88) Global	61 29ª	27° 59 	69,3 67,0 68,2
2	Absence Présence Global	60 30 °	28° 58	68,2 65,9 67,0
3	Absence Présence Global	53 30 °	35° 58	60,2 65,9 63,1
4	Absence Présence Global	57 34°	31 ° 54 	64,8 61,4 63,1
5	Absence Présence Global	59 25ª	29 ° 63	67,0 71,6 69,3
6	Absence Présence Global	58 29°	30 ° 59	65,9 67,0 66,5
7	Absence Présence Global	52 30 °	36 ° 58	59,1 65,9 62,5
8	Absence Présence Global	61 27ª	27° 61	69,3 69,3 69,3
9	Absence Présence Global	58 28°	30" 60	65,9 68,2 67,0
10	Absence Présence Global	64 32ª	24 ° 56	72,7 63,6
11	Absence Présence Global	55 30°	 33" 58 	68,2 62,5 65,9 64,2
12	Absence Présence Global	62 28 °	26 ° 60	70,5 68,2 69,3
13	Absence Présence Global	55 30 °	33 ° 58 	62,5 65,9 64,2
14	Absence Présence Global	52 26°	36 ° 62	59,1 70,5 64,8
15	Absence Présence Global	55 30°	33 ° 58 	62,5 65,9 64,2

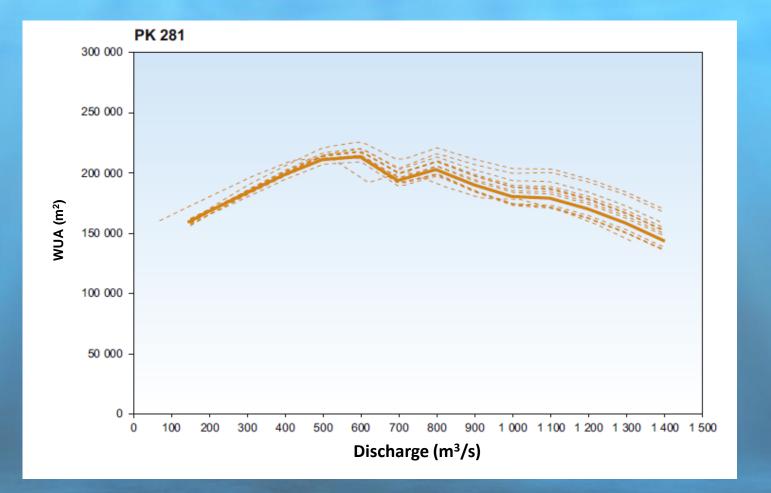
a Erroneous prediction

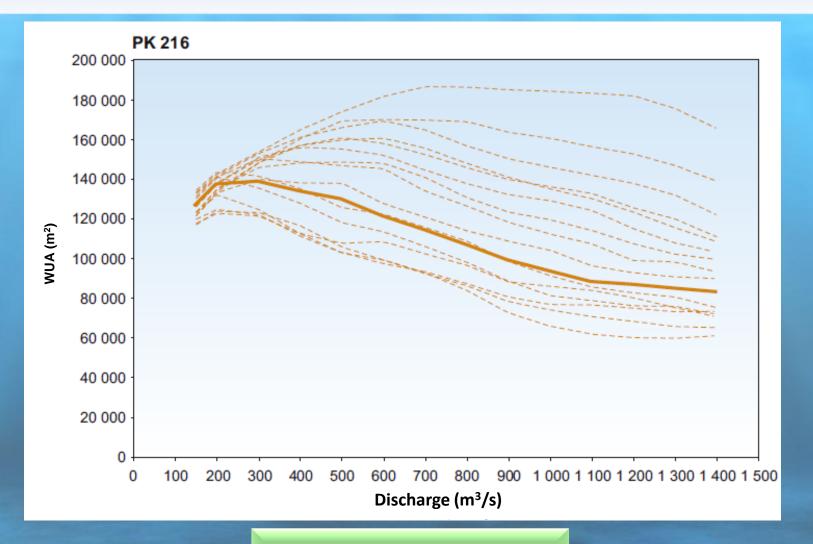
Precision of Fish Habitat Models


 Estimate the variance among sub-models using a Coefficient of Variation (CV) on the variables of the sub models

 $CV = \frac{\sigma}{\overline{x}} 100$

σ is the Standard Deviation and \overline{x} is the average


Sub Model D Depth		D ² Depth	V Velocity	F Froude	% Cobble	% Gravel	Constant
1	2,522	-0,325	-4,383	16,466	-0,015	0,025	-2,559
2	2,587	-0,346	-4,616	17,591	-0,018	0,014	-2,393
3	2,161	-0,316	-2,702	11,382	-0,018	0,019	-2,013
4	1,754	-0,239	-2,138	9,795	-0,021	0,025	-1,724
5	2,154	-0,277	-3,501	16,238	-0,019	0,02	-2,502
6	2,355	-0,309	-3,749	15,363	-0,017	0,027	-2,52
7	2,172	-0,317	-2,848	12,385	-0,021	0,01	-1,89
8	2,453	-0,314	-4,804	19,89	-0,012	0,022	-2,885
9	2,463	-0,323	-4,668	18,643	-0,019	0,011	-2,354
10	2,302	-0,276	-4,606	17,943	-0,014	0,02	-2,495
11	2,042	-0,279	-3,09	13,561	-0,02	0,021	-2,113
12	2,352	-0,304	-4,244	16,749	-0,019	0,023	-2,424
13	2,154	-0,3	-2,939	11,978	-0,016	0,019	-2,082
14	1,861	-0,247	-2,757	14,182	-0,03	0,006	-1,659
15	2,145	-0,282	-3,621	15,107	-0,02	0,013	-2,073
Average	2,23	-0,30	-3,64	15,15	-0,019	0,018	-2,25
andard Deviat	ion 0,24	0,03	0,87	2,90	0,004	0,006	0,34
C.V. (%)	10,6	10,0	23,9	19,2	22,0	33,7	15,3


Good!

SNC · LAVALIN

Excellent!

Unacceptable!

				Débit (m³/s)																		
Sito	Máthada	Méthode Méthode de nterprétation simulation	Máthada da				Sous-modèle															
	d'interprétation		simulation Modèle	Modèle retenu	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Moyenne	Écart type	Min
		Tous les habitats	221	217	202	239	261	247	235	235	210	203	214	235	213	241	253	227	229	18,3	202	261
DK001	0,8 APU _{max}	Habitat >0,5	286	274	257	302	299	282	286	273	264	248	273	303	279	302	267	283	279	16,9	248	303
PK281 -		Tous les habitats	N/A	410	380	420	457	428	423	412	379	377	407	418	399	429	439	412	413	22,4	377	457
	APU _{débit moyen}	Habitat >0,5	N/A	388	336	455	490	505	441	446	367	348	379	454	361	463	496	436	424	56,4	336	505
		Tous les habitats	149	144	139	202	260	217	175	194	145	141	143	196	144	195	243	162	180	39,3	139	260
DKoto	0,8 APU _{max}	Habitat >0,5	131	125	127	160	216	172	138	170	129	128	125	145	127	148	259	138	154	38,3	125	259
PK216 -		Tous les habitats	N/A	237	181	368	435	363	319	360	224	197	229	351	237	362	416	309	306	81,8	181	435
	APU _{débit moyen}	Habitat >0,5	N/A	150	150	201	424	229	150	263	150	150	96	150	150	171	662	150	216	145,4	96	662

Questions?

Example 2

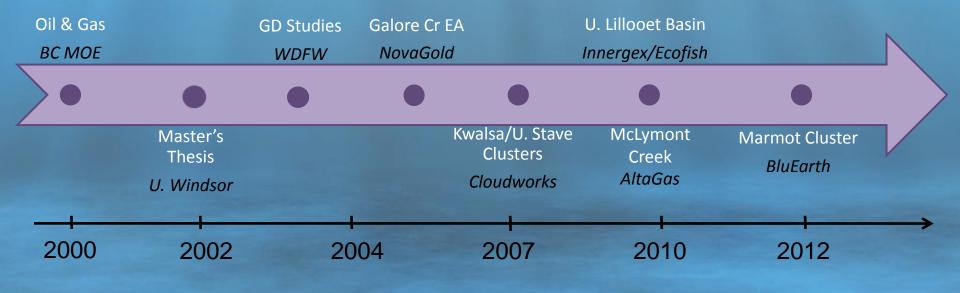
Role of Genetic Studies within Provincial Hydroelectric and Mining Guidelines

Cory Bettles, M.Sc., R.P.Bio., CFP*

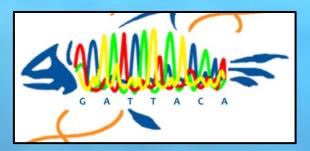
* Certified Fisheries Professional, American Fisheries Society

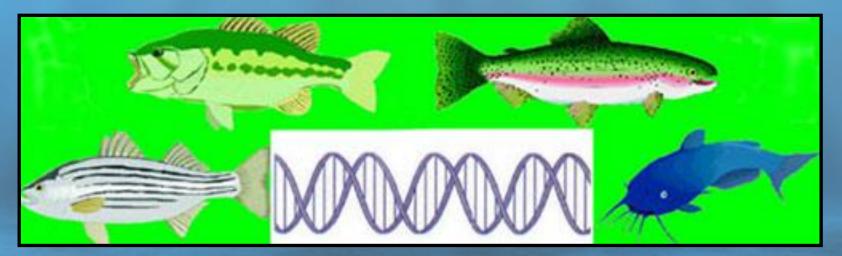
Genetic Diversity

"Range of heritable differences of a trait or set of traits among individuals of a species, within populations and among different populations" (Bagely et al. 2002)


- Essentially synonymous with 'genetic variation' or 'genetic variance'
- Genetic diversity is considered a trait of populations and species, not of individuals

Professional Experience


- B.Sc. (UNBC) and M.Sc. (GLIER, UWindsor)
- Master's thesis: Hybridization b/t Sympatric CTT and RBT/STD Trout on Van. Island
- Numerous studies specific to fish population structure



"Going Beyond" the Guidelines

Current Guidelines

Genetic Diversity studies are not discussed or included

"Going Beyond" the Guidelines

Our Recommendations

- Inclusion of genetic diversity studies in EA when:
 - Species-at-risk (including specifically designated stocks) are present within the study area
 - Species are present that have complex life history strategies (e.g. BT, DV, CTT)
 - Watershed-scale projects where stream networks are potentially affected

Why?

1. To adhere to the Provincial Mandate

BC MoE Service Plan

Ministry of Environment and The Environmental Assessment Office

> 2012/13 – 2014/15 SERVICE PLAN

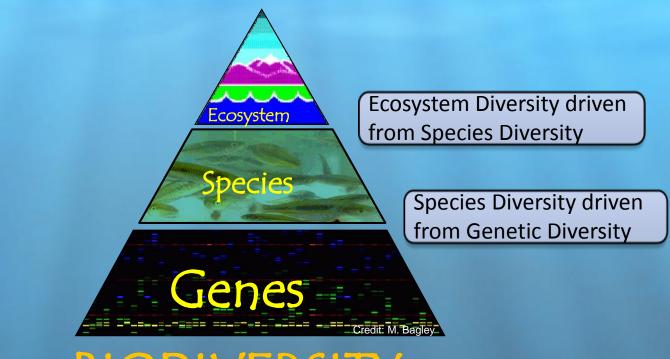
> > February 2012

Assessment Methods for Aquatic Habitat and Instream Flow Characteristics in Support of Applications to Dam, Divert, or Extract Water from Streams in British Columbia

Final Version
Propage do for:
Ministry of Warel, Land & Air Protection and
Ministry of Statianable Resource Management
Propared by:
Man Levis
Eodin Resorts, Pennan Idand, BC
Todh Rafadd
Schulz Feological Reserve, Vietoris, BC
Barry Calibredy
Nardweet By Reinel Constitution, Nerfs Vancouver, BG
Calibria District

March 2004

"Improve the status of biodiversity by safeguarding ecosystems, species and genetic diversity" (p.21)


"Fisheries data collected to support a water license application should meet or exceed existing inventory standards" Lewis et al. 2004

Why?

2. To insure the maintenance of <u>biodiversity</u> of fish species

Importance of Biodiversity

BIODIVERSITY

- Fundamental organization unit of biodiversity
- Any goal to monitor/maintain biodiversity is incomplete if only considers species & ecosystem component

Importance of Biodiversity

- The level of development in B.C. has consequences on environmental resources such as fish and wildlife and their habitats, ecosystems and water quality
- Certain species and ecosystems are designated as at risk
- Nature's Pulse (2008), an assessment of the state of British Columbia's biodiversity, states that:

"British Columbia's biodiversity is globally significant because of its variety and integrity but without immediate action, it is vulnerable to rapid deterioration, especially in light of climate change... Expanding human settlement and development are the most obvious but not the only threats to biodiversity in B.C. today" (Austin et al. 2008)

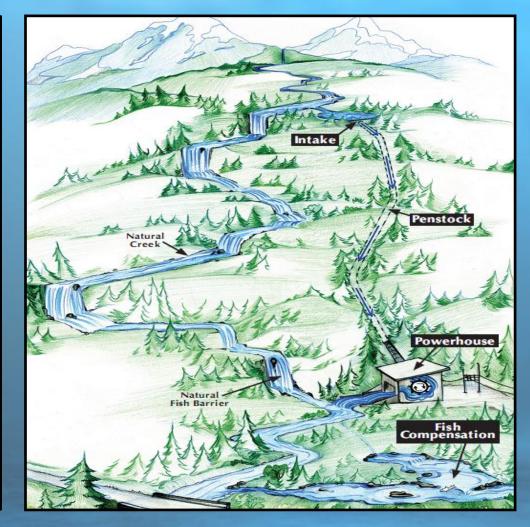
Importance of Biodiversity

Major Findings on threats to Biodiversity:

"The <u>cumulative impacts</u> of human activities in British Columbia are increasing and are resulting in the loss of ecosystem <u>resilience</u>. B.C. today" (Nature's Pulse 2008)

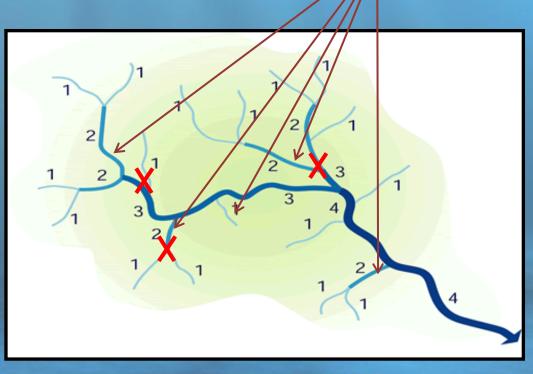
"<u>Connectivity</u> of ecosystems in British Columbia is being lost and, among other impacts, this will limit the ability of species to shift their distributions in response to climate change" (Nature's Pulse 2008)

Why?


3. Genetic studies provide invaluable information for EIA

Traditional View

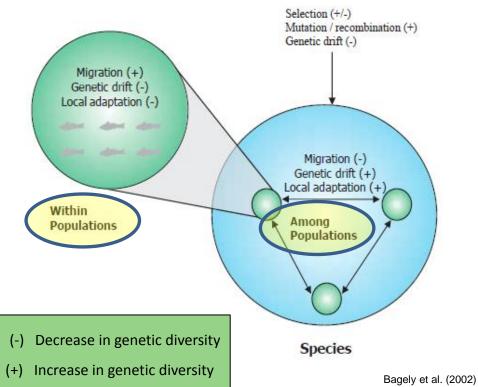
"Not only did they install an elevator to help you get over the dam, they also hired an elevator operator." © T. McCracken mchumor.com



Genetic Diversity Studies

- Majority of indicators: inform little about the biological connectivity of geographic areas
- Will individuals of a species from a given region replace extirpated populations of another?

 How much evolutionary history of a species will be lost if the habitat of one distinct population is lost/altered through development?



Genetic Diversity Studies

To understand long-term effects of environmental change on populations, need to:

• Fundamental Aim:

- Ensure sufficient diversity is retained to maintain short-term fitness & longterm sustainability
- Protect populations highly distinct or key evolutionary lineages

Importance of Genetic Data in EIAs

Define Population Boundaries of VCs

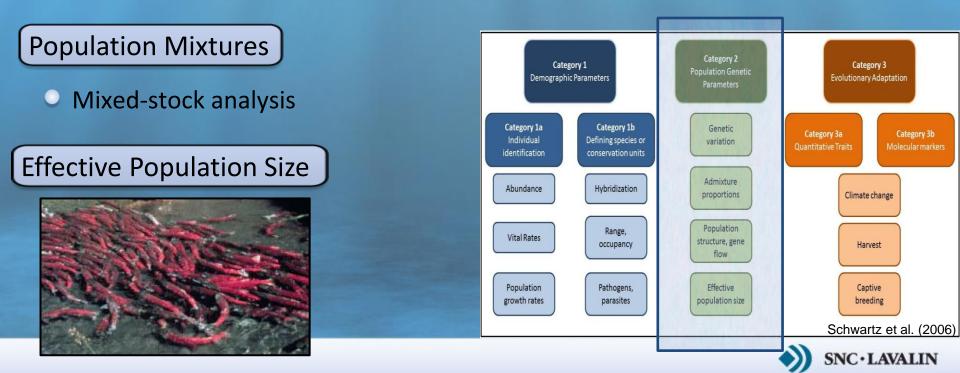
- Characterize the natural genetic structure of populations within ecosystems
- Essential population attributes diagnosed only with genetic data (connectivity, N_e)
- Analyze Hierarchical Structure
 - Fish : basic units of measure are populations residing in different stretches of stream/river, which are nested within watersheds, nested within regions etc.
- Measure of Cumulative Effects
 - Current genetic diversity of a population = consequence of effects over many previous generations
- A dynamics of populations: how will they be altered with ongoing environmental change?

Genetic Assessment & Monitoring

Genetic Assessment

Snapshot of population characteristics at a single point in time

Quantifying temporal changes in population genetic metrics



Population Parameters

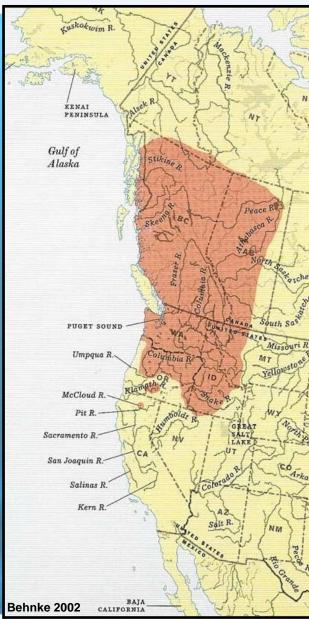
Genetic Variation

Population Structure/Gene Flow

 ID of management units (population structure) & knowledge of gene flow b/t populations ->detect changes in differentiation

Genetic Diversity in EIAs

- Typical genetics studies used in EAs: Species ID
- Examples
 - Galore Creek Mine EA (2005): Bull Trout/Dolly Varden Species ID
 - Prosperity Mine EA (2011): Fish Lake & RBT
 - Morrison Copper/Gold Mine EA (2012): Rejected by Minister Terry Lake


"Morrison Lake is an important ecosystem, in that it supports <u>genetically</u> <u>unique populations</u> of sockeye salmon, which are one of the largest stocks of non-hatchery sockeye. These stocks are <u>important for their genetic</u> <u>diversity</u>, and cannot be replaced if they are lost" (EAO 2012)

 BC Hydro Site C – Project Description (2011): "Ongoing work will provide further information regarding species genetic diversity, aquatic productivity..."

Genetics in an EIA in BC

- Bull Trout (Salvelinus confluentus)
- Priority sportfish species of conservation concern
- British Columbia
 - Blue Listed,
 - Provincial Management Plan
 - CuFX Tool
- O Alberta
 - Special concern
 - Provincial Management Plan
- Canada
 - COSEWIC
- USA
 - Threatened
 - Endangered Species Act 1999
- Key Features
 - Species very sensitive to habitat alterations/loss
 - Life History Types (resident, fluvial, adfluvial)

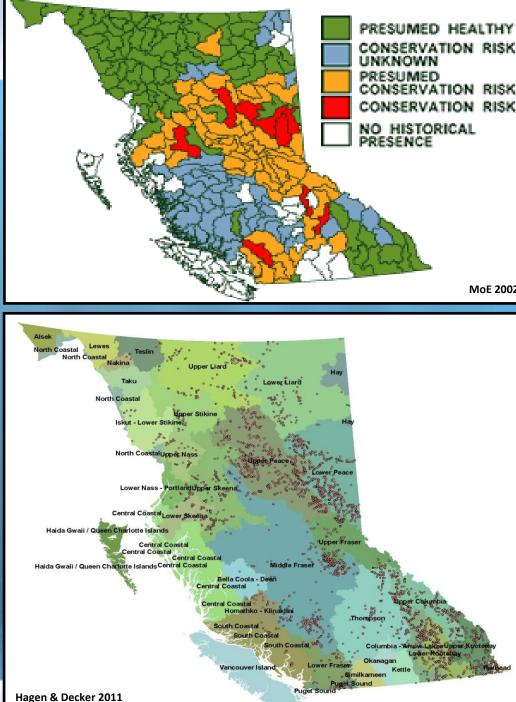
Genetic Assessment of Upper Lillooet Bull Trout

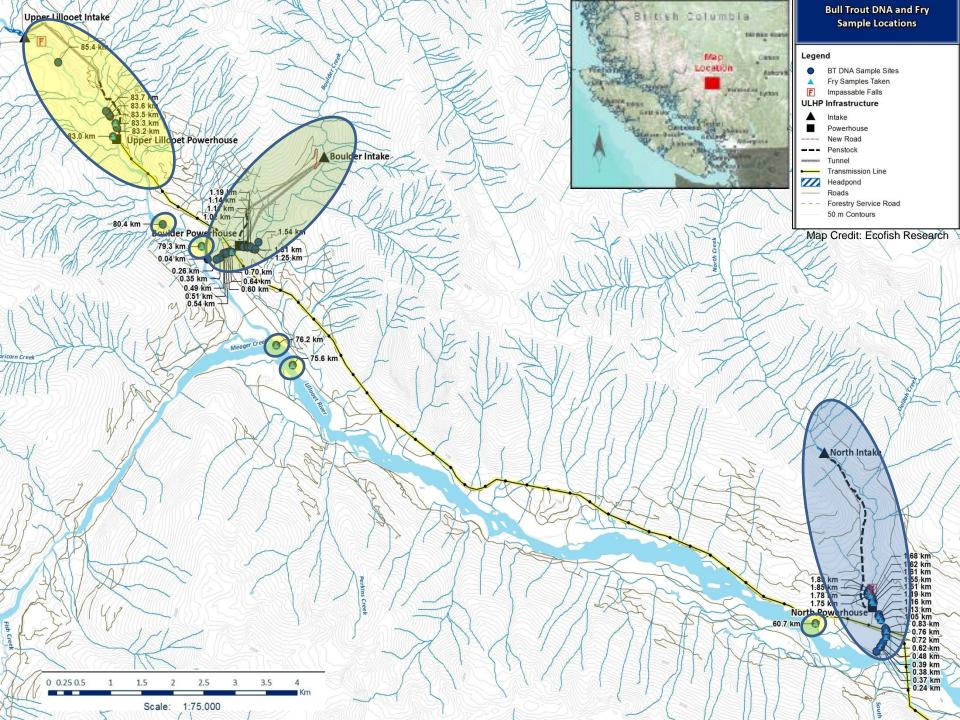
Costello et al. (2003)

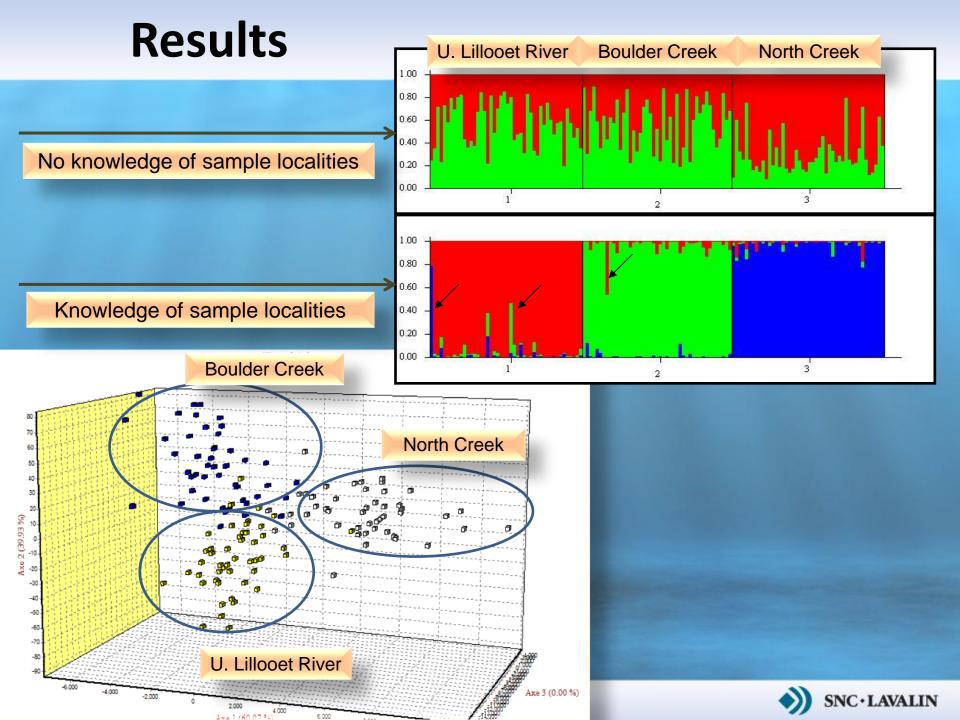
- High levels of population subdivision at basin level
- Above-barrier populations contain locally rare alleles
- Hagen & Decker (2011)
 - Lillooet Core Area
- U. Lillooet, Ryan, Birkenhead
 - High threat
 - Status unknown

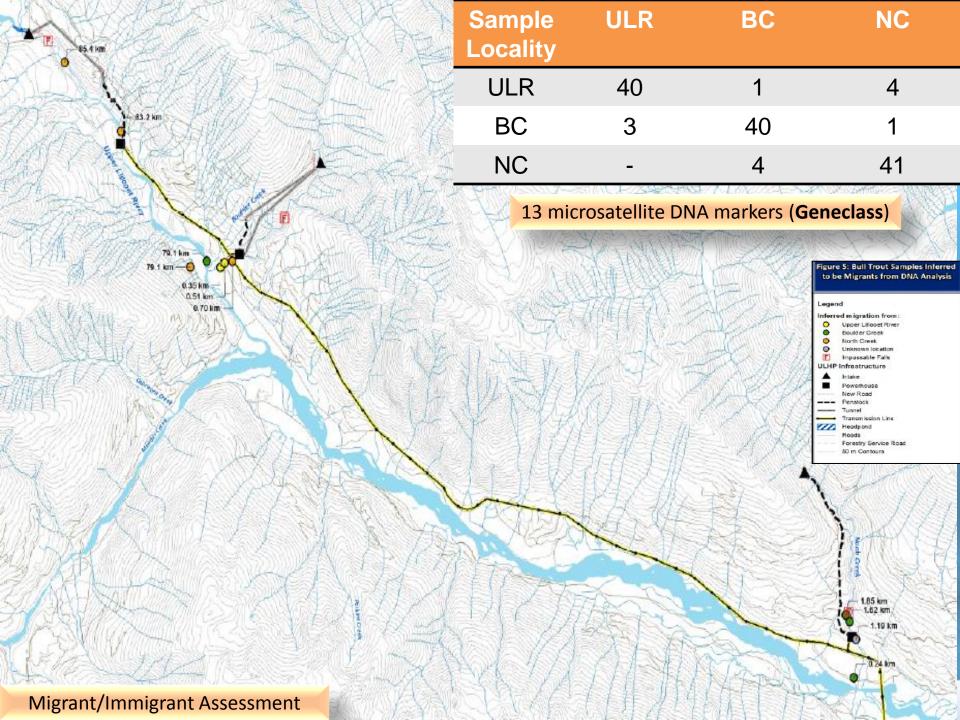
Need for better understanding of population demographics

- Population structure
- Population size
- Level of inter-locality dispersal
- Connectivity
- Genetic assays
 - Monitor long term persistence of populations








Objectives

- Characterize Bull Trout collections in terms of genetic diversity
- Determine genetic
 relationships among sample
 localities & infer levels of
 interconnectedness amongst
 localities
- Integrate (1) and (2) into baseline data to assist in the assessment & monitoring of population structure over time

Effective Population Size

 \sim N_B: effective number of breeders: related statistic to N_e.

L	Upper Lillooet River	Boulder Creek	North Creek
LD	165 (106 – 348)	46 (38 - 56)	79 (59 - 112)
SA	58 (39 – 90)	60 (38 - 95)	58 (37 - 91)
Notes: Confidence limits (95%) derived by jackknifing over loci are provided in parenthesis.			

- Low N_B: vulnerable to inbreeding (if gene flow low)
- Genetics in Population Viability Analysis (PVA)
 "50/500" Rule
- Genetic monitoring

Value of Genetic Diversity Data in EA

- Essential tool for filling critical data gaps on Projects that are at a watershedscale (e.g. mining, hydroelectric)
- Population-level measure (of VC) rather than individual-level measure
- Measure of cumulative impact on population VCs
- May identify problems within species before species assemblage indicators become significant
- Well-defined relationships between genetic data and the size/connectivity of populations
- Highly complementary to species assemblage and landscape/ecosystem data typically collected for impact assessments
- Important indicator of population trends through temporal monitoring
- Data Value vs. Cost

Conclusion

- Guidelines are not "Status Quo"
- Guidelines are living documents Need continuous improvement
- Need to be open to enhancing guidelines
- Knowledge to 'think outside the box' with respect to other methodologies
- Consult experts
- Use of other habitat models, determining accuracy and precision of models used, and application of genetic diversity studies are just a few examples

Questions?

