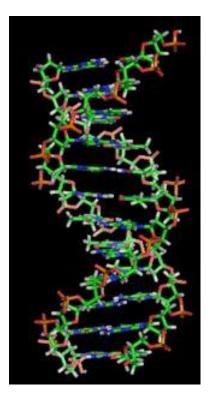


Environmental DNA (eDNA)

A Revolutionary Sampling Technique for Aquatic Ecological Studies

By: Jared Hobbs, M.Sc., R.P.Bio., Senior Biologist, Hemmera

Date: October 22, 2015


Outline

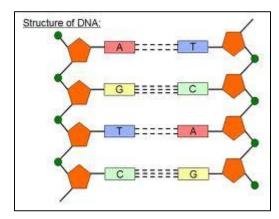
- What is eDNA
- Methodology
- Considerations (timing, feasibility)
- Efficiencies and limitations
- Current Applications
 - Hemmera current projects and experience
- Potential Applications

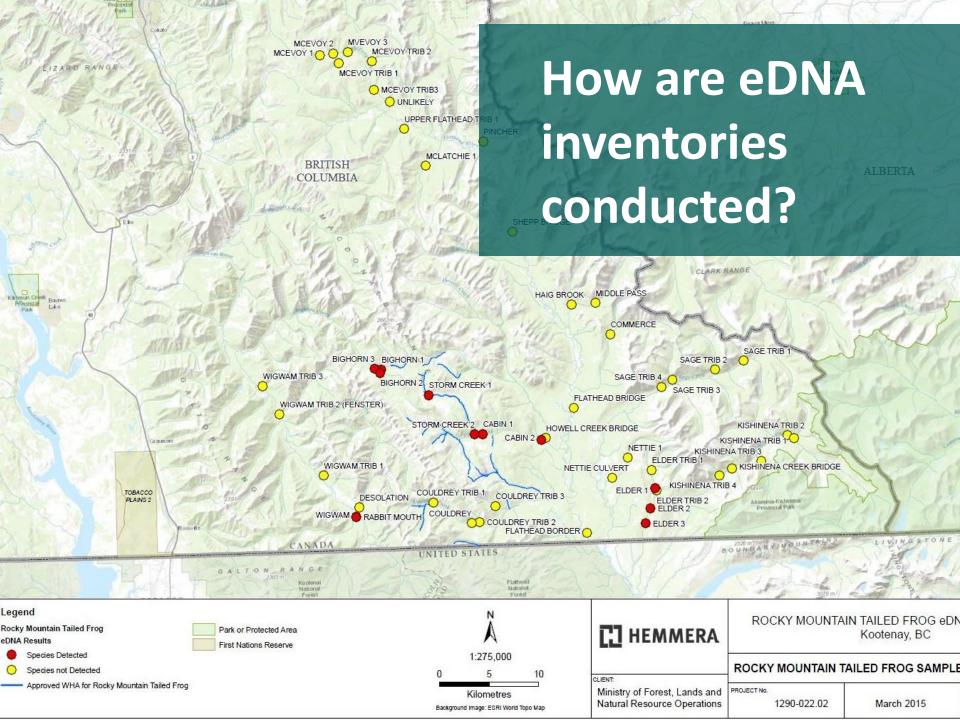
The Basics...

- **Deoxyribonucleic acid** (DNA) molecules carry an organism's genetic information.
- Base pair sequences are unique between organisms: these differences provide a unique way to identify species, populations and individuals.
- With eDNA, the use of mitochondrial DNA is preferred —it's more abundant than nuclear DNA and Genbank has more sequence data.

What is eDNA

Environmental DNA (eDNA)

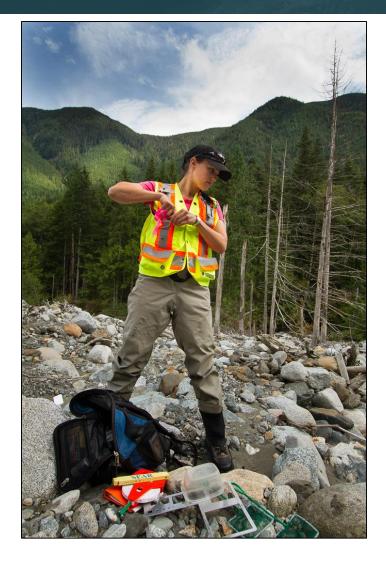

- Relies on the detection of naturally occurring genetic materials that can be collected from the environment
- gametes, dead skin cells, feathers, hair, feces, urine, egg plasma, saliva



Primer and Probe Design

A good primer will contain an inclusive consensus sequence that incorporates all within-species variability for a species in a well-known sequence of DNA. Primers can be reviewed against sequences published in GenBank or against sequences obtained from tissue samples of target and co-occurring closely related species.

- Primers need to incorporate the full range of genetic variation for the target species to avoid false negatives
- Primers need to incorporate the full range of genetic variation for closely related, co-occurring species to avoid false positives.



Field Sampling Methodology – Step 1

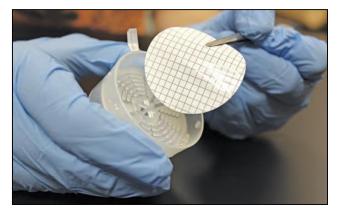
Four methods for field sampling have been developed to date:

- Collection of 15 mL of water which is then preserved using ethanol and sodium acetate. Then frozen immediately
- 2. Filter water through a glass fiber filter.
- 3. Filter water through carbonate filter.
- 4. Filter water through a cellulose nitrate filter.

Option #4 allows off-site filtering and is the most practical method for field use.

Field Filtering Methodology – Step 2

- Unless filtering in the field samples must be stored, during prior to filtration, in a refrigerator.
- "Back at the camp" (or lab) eDNA is concentrated using filtration with a peristaltic pump or a suction pump
- Once filtration is complete, the filter paper can be frozen or dehydrated in vials with molecular-grade ethanol*.



*Molecular grade ethanol is required and requires a permit to purchase – OTC ethanol will denature the DNA! **We're exploring alternative methods for preservation

Laboratory Requirements – Step 3

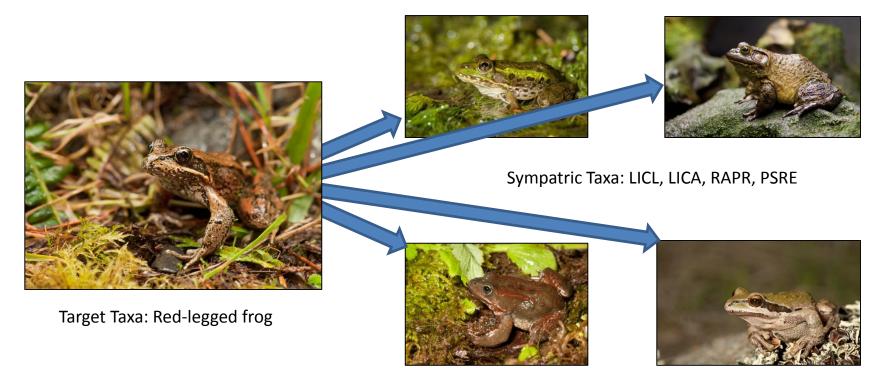
Hemmera works collaboratively with Dr. C. Goldberg – WSU; Caren played a lead role in the development of this new method.

 eDNA extractions and qPCR setups should be conducted in a PCR-free laboratory space where concentrated (such as from tissue) DNA samples have not been handled.

 Thermocyclers and real-time PCR machines should be located outside of this space.

Eliminating Type 1 & Type 2 Errors

Like any field-based sampling, protocols must be followed:


- replicate samples are required to estimate occupancy while accounting for uncertainty
- Include known sites in study design to measure efficacy.
- Site sampling could include sites outside the range, or habitat tolerances, of target taxa to test potential for false positives.
- Distilled water can also be used (lab blindtest) to control for contamination during both the filtering process AND during lab-testing.
- Clean field procedures are required (different requirements at different stages depending on contamination risk)

Eliminating Type 1 & Type 2 Errors

Primer development requires a comprehensive screening process to exclude sympatric and parapatric species

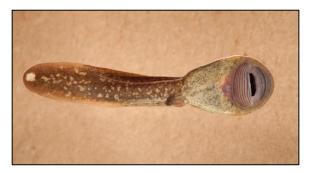
- Type 1 error: false positive detection
- Type 2 error: false negative detection

Project & Survey Design Considerations

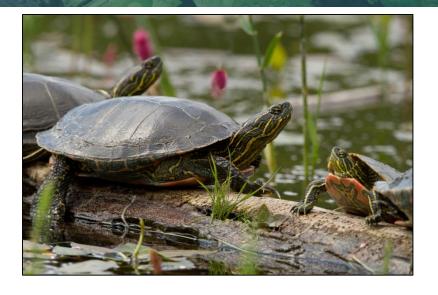
Consider sampling requirements to ensure conditions are appropriate for the system you're sampling...

Project & Survey Design Considerations

Know the species' life history

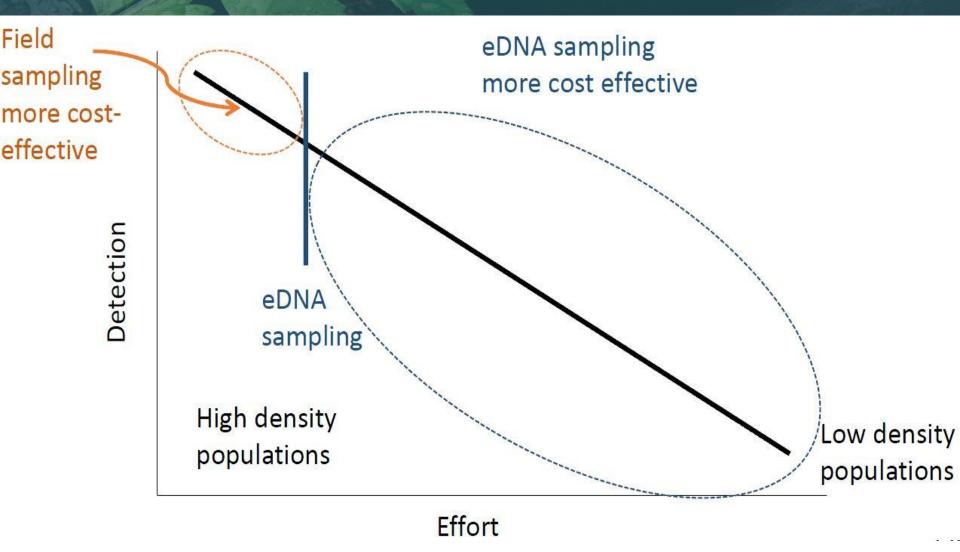

• Is there a permanently aquatic life history phase...

• ...or does your target taxa tadpole mature in three days, or 6 years???



What are the advantages of eDNA?

- more cost effective
- more accurate
- less invasive


eDNA: Key Strengths

- Useful for detection of inconspicuous species.
 - Detection is challenging, using conventional methods, for cryptic species that occur in low densities, have discontinuous distributions or secretive life-histories (nocturnal, low observability).
- eDNA facilitates early detection and monitoring for species of management and/or regulatory concern.

When to use eDNA: CBA

When to use eDNA: CBA

CBA that neglects full consideration of each of these methodological attributes may be misleading.

Attribute	Conventional Methods	eDNA
Efficacy	Low-High	High
Multi-species	No	Yes
Retro-active addition of taxa	No	Yes
Adaptive design/testing	No	Yes
Observer and detectability bias	High	Low
Permitting required	Yes	Νο
Invasiveness	High	Low
Pathogen transfer risk	High	Low
Timing	Restrictive	Less Restrictive
Special equipment/training	Medium-high	Low
Safety considerations	Medium-high	Low
Abundance and proximity	Yes (with appropriate design)	No

Limitations of eDNA

What eDNA can tell us today (Binary answer):

- If the target taxa was present at the site during, or immediately prior to, the time of sampling
- What eDNA won't tell us (yet?) (Abundance):
- Target taxa abundance and density
- Duration, frequency and temporal proximity of use
- Precise physical proximity of target taxa (hard to define transport potential)

Reporting Results

Like any new or emerging science – perfection of methods and techniques is an evolving process based on adaptive feedback.

- "Identifying sources of error or uncertainty is a critical process in any study, especially for monitoring programs where results could influence future management decisions" (USGS. 2013)
- "eDNA detectability and concentration depend on production rates of individuals, environmental conditions, density of animals, and their residence time" (Pilliod et al. 2014).

Responsible reporting, clearly outlining limitations and describing assumptions, are required...but despite these caveats eDNA methods show great potential for inventory and monitoring aquatic species (USGS. 2014).

C HEMMERA

Hemmera and eDNA as a service offering

Our experiences....and we're just getting started!

Hemmera: Current BC Projects

Rocky Mountain Tailed Frog Tiger Salamander Spadefoot Red-legged Frog Coastal Tailed Frog Pacific Water Shrew

Kelowna ummerland Penticton

Rocky Mountain-Tailed-Frog-

Lethbridge

HEMME

Edmonton

Wetaskiw

Red Deer

Calgary

Hemmera: Current Yukon Projects

Western Toad Columbia Spotted Frog Chinook Salmon Bull Trout Ranavirus Bd

I water N

Columbia Spotted Frog

Standard Operating Procedures

In 2014 we authored an internal eDNA protocol detailing collection procedures, primer development, sample transport and lab testing requirements.

No the second

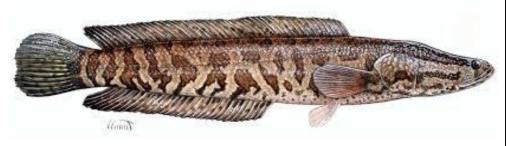
- In 2015 we developed a provincial standard, for MOE, for application by other practioners in BC and beyond.
- This standard is intended for adoption as a RISC standard in BC.

STANDARD OPERATING PROCEDURE <u>eDNA</u> Field Collection Protocol

September 201

门 HEMMERA

STANDARD OPERATING PROCEDURE <u>eDNA</u> Sample Shipping Protocol


> Prepared by: Hemmera 50 – 1380 Burrard Street Vancouver, BC V6Z 2H3

Current Applications

• Useful for early detection of invasive species.

"Some intensive eradication programs for invasive species fail when a few surviving individuals recolonize the ecosystem. eDNA methods may provide a means of confirming eradication of all invaders" (USGS 2012)

- eDNA facilitates early detection and monitoring (Presence/Notdetected) for management for:
 - Species of regulatory concern
 - Pathogens
 - Invasive species

Future Expanded Application

Hemmera is the first to apply eDNA in a commercial (nonacademic) setting in western Canada, we're excited by its potential to:

- Inventory for an increasing number of S@Risk
- Assess effectiveness of restoration programs
- Support environmental assessment processes
- Assess effectiveness of control programs for invasive species
- Develop monitoring programs for management purposes (relative abundance estimates of multiple sites on a temporal scale)

Thank you. Questions?

Contact Us Jared Hobbs

Hemmera 1221 Broad Street Suite 303 Victoria, BC V8W 2A4

Existing Primers

Common name	Scientific name
Amphibians	
Rocky mountain tailed frog	Ascaphus montanus
Northern red-legged frog*	Rana aurora
Great Basin Spadefoot*	Spea intermontana
Tiger salamander*	Ambystoma mavortium
Columbia spotted frog	Rana luteiventris
Northern leopard frog	Lithobates pipiens
Western toad	Anaxyrus boreas
Coastal giant salamander	Dicamptodon tenebrous
Oregon spotted frog	Rana pretiosa
Cascades frog	Rana cascadia
Long-toed salamander	Ambystoma macrodactylum
Fishes	
Chinook salmon	Oncorhynchus tshawytscha
Lake trout	Salvelinus namaycush
Bull trout	Salvelinus confluentus
Brook trout	Salvelinus fontinalis
Mammals	
Pacific Water Shrew*	Sorex benderii

* Hemmera developed and maintains IP.

Requested Primers

Common name	Scientific name
Fishes	
Dolly Varden	Salvelinus malma
Least Cisco	Coregonus sardinella
Pygmy whitefish	Prosopium coulterii
Arctic grayling	Thymallus arcticus
Aquatic Invasives of Concern	
Didymo	Didymosphenia geminata
Zebra (dreissenid) mussels	Dreissenidae
New Zealand Mud Snail	Potamopyrgus antipodarum
Water Weeds	Elodea spp.
Eurasian Milfoil	Myriophyllum spicatum
VHSV	Viral hemorrhagic septicemia virus
Myxosporean parasite	Myxobolus cerebralis
Fanwort	Cabomba sp
Spiny Water Flea	Bythotrephes longimanus
Goldfish	Carassius auratus auratus
Rainbow Trout	Oncorhynchus mykiss
Arctic Char	Salvelinus alpinus
Threespine Stickleback	Gasterosteus aculeatus
Silver Carp	Hypophthalmichthys molitrix
Northern Snakehead	Channa argus
Rusty Crayfish	Orconectes rusticus
Invertebrates	
Rocky Mountain Ridged Mussel	Gonidea angulata