

# EMA of BC - Species at Risk Speaker Session

Analytical Methods used with Non-lethal Sample Collection
November 19, 2015
Tim Crowther



### **Safety Moment**



- Sample Preservation Uses Strong Acid/Base
  - PPE and no contact lenses
  - MSDS available online at <u>www.alsglobal.com</u>
  - Eye Wash / Rinse Station





### **Non-lethal Sampling for Metals**



- Tissue plug or dermal punch procedure was developed by Baker et al. in support of Hg testing requirements for EEM for MMER
- BC Ambient Water Quality Guidelines
- Health Canada consumption guidelines for acceptable levels of metals in food/fish.



- Practice first on your dinner if possible
- Prepare 2 holding tanks, one oxygenated, the other with anaesthestic, such as Clove oil or MS-222
- Capture and Anaesthetize the fish
- Take your sample





A Biopsy Needle harvests 10-25 mg of tissue.

• Tru-Cut TM



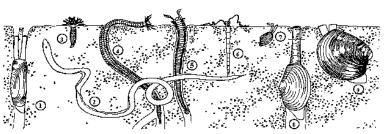
 A 4mm Dermal Punch harvests 50-75 mg of tissue, used on fish 200mm in size.





- Typically an experienced surgeon can remove the sample in less that 10 seconds to reduce stress on animal.
- Samples should be preserved by freezing with liquid nitrogen or dry ice if possible in 2 mL vials and transported to the laboratory as soon as possible.






- Tissue plugs often leave open wounds, which need to be sealed to prevent infection.
- Sterile crazy glue, such as Nexaband<sup>™</sup>, which acts like a waterproof bandage, should be used to close the wounds to decrease the chance of infection.
- Return fish to the oxygenated holding tank and release once recovered and swimming normally.

### **Metals Analysis**



- 50-100 mg sample size is ideal
- Full metal scan by ICP-MS or HR-ICP-MS and CVAF/AS
- Samples types can include











## **Passive Samplers**



| Sampler | Construction                                                                                                                 | Compounds                                                                                      |
|---------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| SPMD    | Semipermeable membrane device: flat tube of LDPE filled with lipid                                                           | Hydrophobic semivolativle organics with log $K_{OW} > 3$                                       |
| POCIS   | Sampler consists of solid sorbent enclosed between two membrane layers that are mounted on a pair of stainless steel washers | Polar pesticides and pharmaceuticals with log $K_{OW} < 3$                                     |
| RPP     | Rigid Porous Polyethylene (RPP) Samplers are made of thin porous polyethylene filled with water                              | Polar pesticides and pharmaceuticals with a log K <sub>ow</sub> < 3 and inorganic constituents |
| PDB     | Polyethylene bag filled with ASTM Type II deionized water                                                                    | Volatile organics compounds with log K <sub>OW</sub> < 3                                       |
| DGT     | Plastic sampler with filter,<br>hydrogel and an ion exchange<br>resin                                                        | Dissolved metals and organometallic complexes                                                  |

#### **SPMD Construction**

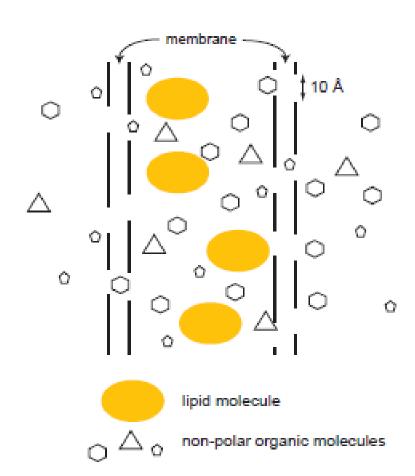


2.5 cm wide (layflat) and
 1m long LDPE membrane

 Contains 1 mL (0.915g) of triolein (lipid or animal fat) as a thin film



#### **Uses of an SPMD**




- Oil and water don't mix
- Many organic chemicals dissolve in oils better than water
- Organics are fat loving (lipophilic) not hydrophobic (water hating)
- Organic contaminants may be present in low concentrations in the water but bioconcentrate in the lipid or fat of animals.
- SPMDs can detect these low concentrations in the water as they mimic the bioconcentration in animal fats.

#### How SPMDs work



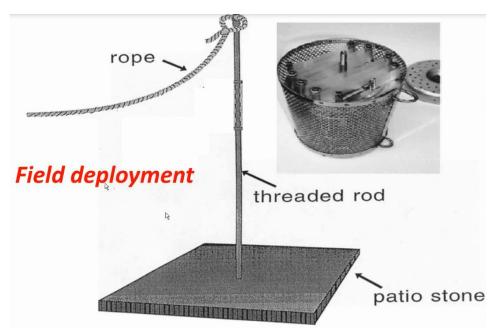
- Contaminant molecules smaller than 1 nm can pass through the pores and dissolve in the lipid (triolein)
- The lipid molecules are too large to pass through the membrane and so the contaminants are retained (bioconcentrated)



### **How SPMDs are Deployed**



- SPMD is wrapped
   around a stainless steel
   spider and shipped and
   stored in a one gallon
   paint can
- Up to 5 SPMDs can then be mounted into a stainless steel cage for deployment



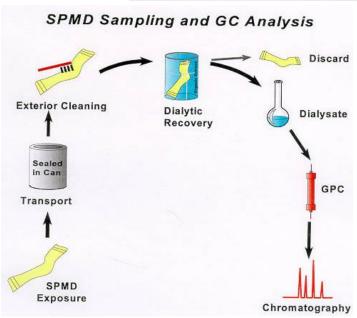





### **How SPMDs are Deployed**







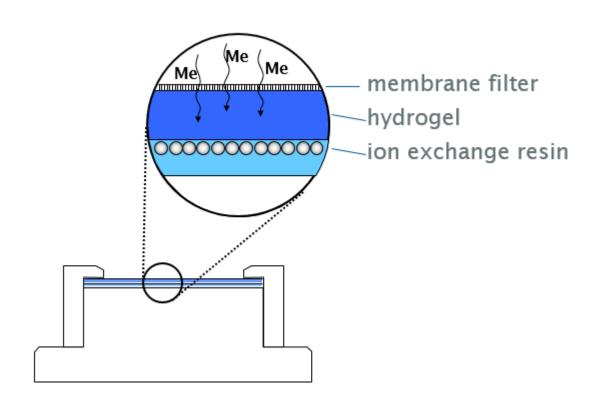

#### How SPMDs are Analyzed at ALS



- SPMDs are recovered from environment and sealed in original can and placed on ice or frozen
- Membrane is cleaned with soft brush to remove barnacles, periphyton, mineral precipitates
- Integrity of sampler is checked
- Dialysis
- GPC Clean-up
- Analysis by GC-MS or GC-HRMS



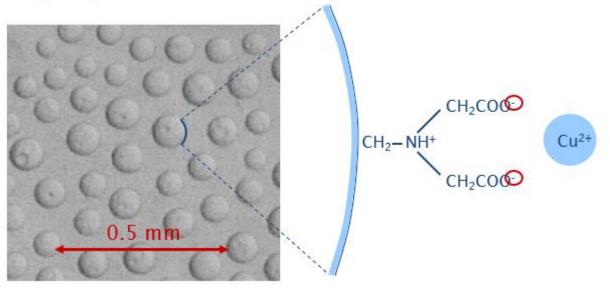



### Organic Compounds that can be Measured



- Priority Pollutant PAHs + alkylated PAHs
- Organochlorine pesticides, OPPs
- PCBs, PBDEs, Dioxins/Furans
- TBT
- Alkyl phenols
- Essentially any compound with log  $K_{ow} > 3$

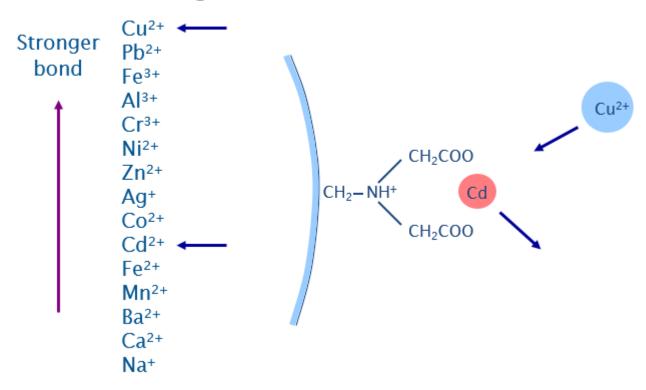
#### **DGT - Diffusive Gradients in Thin Films**






#### **DGT - Diffusive Gradients in Thin Films**

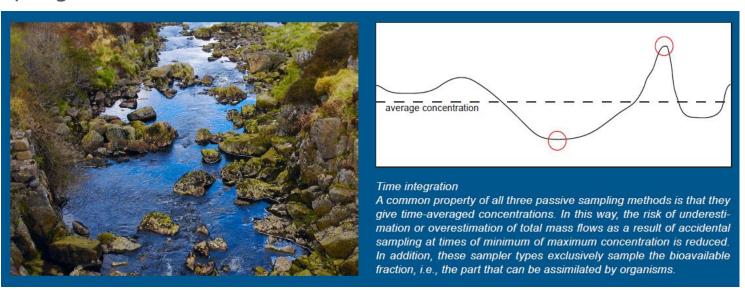



- Chelex® 100 ion exchange resin (Bio-Rad, USA)
- Styrene divinylbenzene polymer with iminodiacetate groups



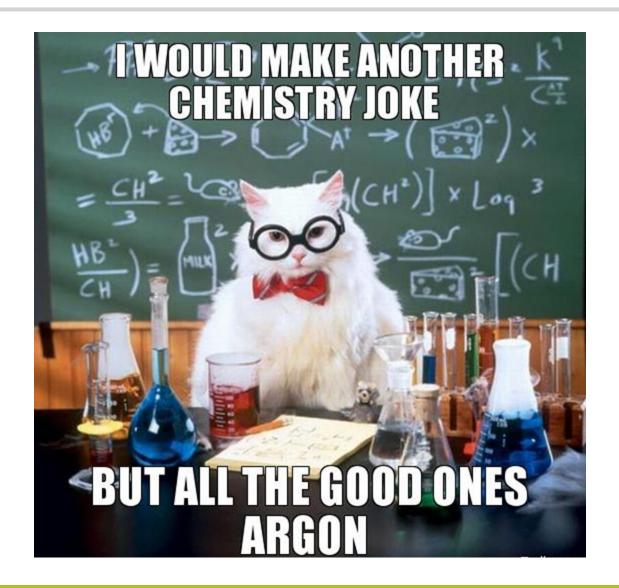
#### **DGT - Diffusive Gradients in Thin Films**




#### Binds stronger to some ions



#### **Summary of the Advantages of SPMDs/DGTs**




- Can be used to estimate bioconcentration factors for fish uptake of contaminants.
- Easier to use than fish
- Can be deployed over long periods of time, so TWA concentrations can be determined
- Can be fixed and therefore do not have the associated problems when sampling biota



### **Questions**



