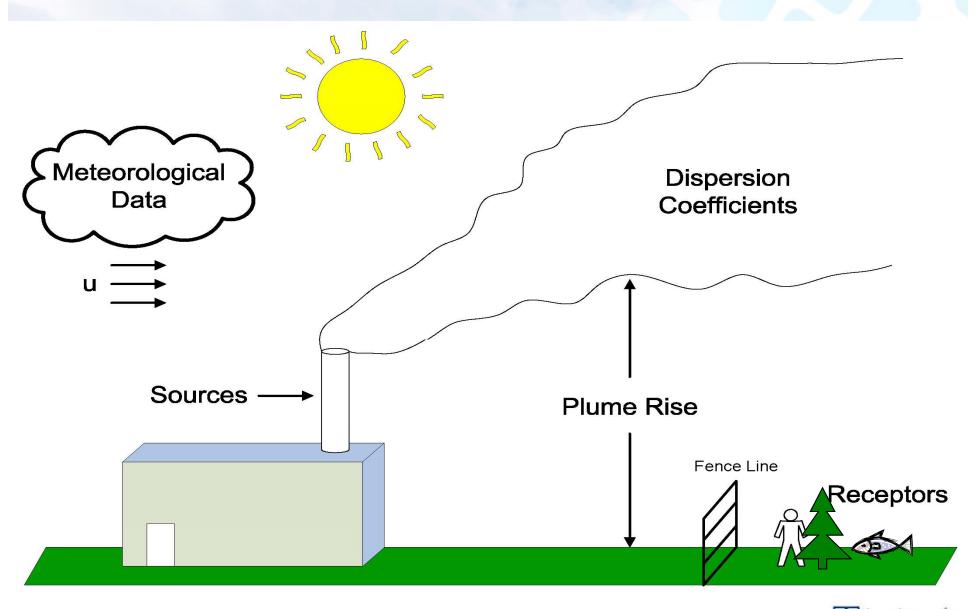


Topics to Cover

- > What is Air Dispersion Modelling?
 - Types of Models
 - CALPUFF Overview
- > Kitimat Emissions Effects Assessment Example
 - CALPUFF Concentration Results
 - CALPUFF Deposition Results
- > Translating lessons learned to permit modelling


What is Modeling?

Modeling - a definition

"Modeling is the combined mathematical simulation of <u>atmospheric processes</u> which gives a convenient and physically meaningful way of relating sources/emissions to ambient air impacts"

Structure of a Dispersion Model

For Each Source

Physical Height

Pollutant Emission Rate

Coordinates

Stack Diameter

Stack Gas Velocity

Stack Gas Temperature

Building Dimensions Used to Characterize Wake Effects

Meteorology

Stability

Wind Direction

Wind Speed

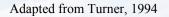
Mixing Height

<u>Ambient</u>

Temperature

For Each Receptor

Coordinates

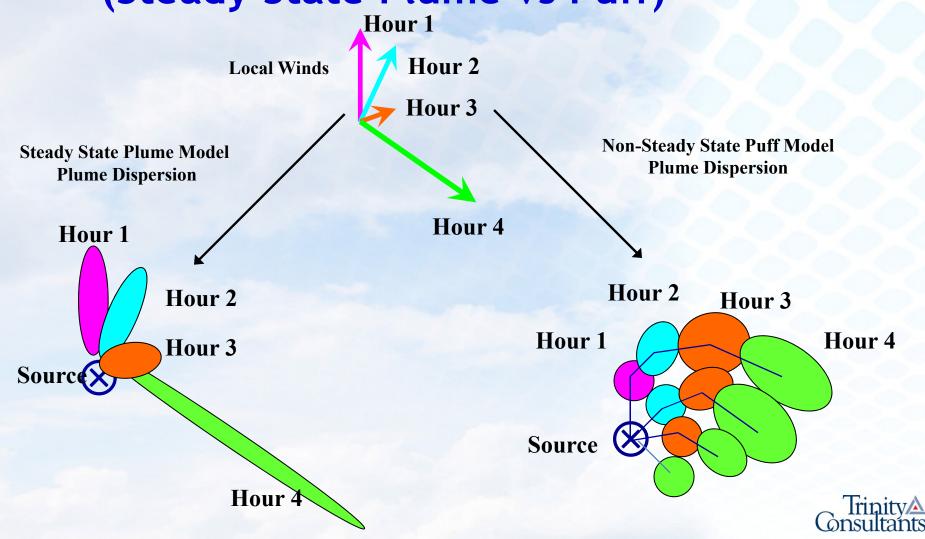

Ground level

Elevation

Height Above Ground

Simulation of Atmospheric Physics

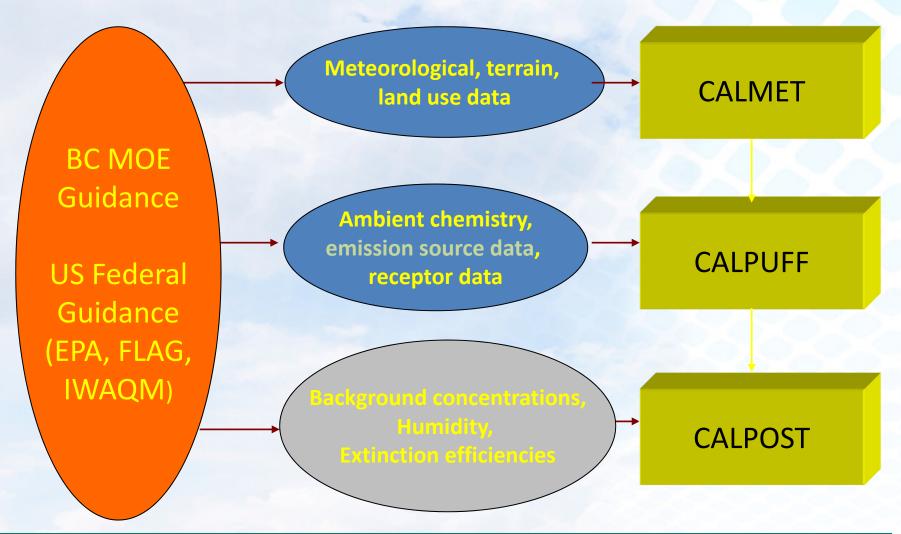
Estimates of Air
Pollutant
Concentrations at
Receptors



Dispersion Models

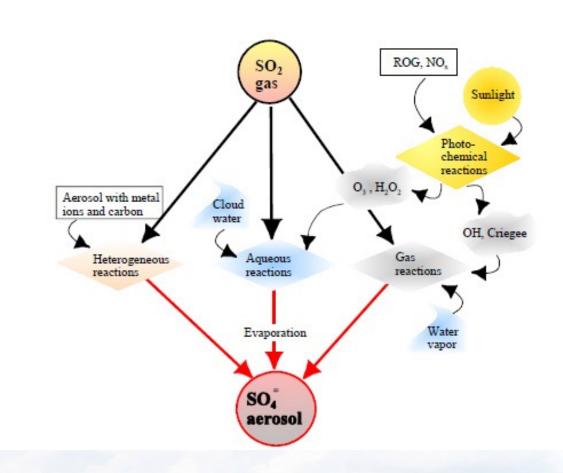
- > SCREEN Models
 - SCREEN3, AERSCREEN, CALPUFF Screen
 - Models that give worst-case first-cut concentration.
- > Refined Models
 - ISC / AERMOD (<50 km)</p>
 - CALPUFF (>50 km and complex winds)
- Special Case Models
 - CMAQ Community Mulitscale Air Quality (ozone)
 - CAMx Comprehensive Air quality Model with extensions (ozone)
 - CTDM Complex Terrain Dispersion Model
 - RPM Reactive Plume Model
 - SDM shoreline fumigation
 - DEGADIS dense gas model

ISC / AERMOD vs CALPUFF Models (Steady State Plume vs Puff)


CALPUFF used for Kitimat Emissions Effect Assessment

Because:

- > Complex Terrain
- > Stagnation Conditions
- > Long-range transport
- > Deposition
- > Buoyant Line Source (KMP aluminum smelter potlines)


CALPUFF Modelling System

Only one meteorological year (2008) was simulated (highest S deposition)

CALPUFF Chemical Transformation and Deposition Mechanisms

Chemical Transformation: MESOPUFF II Scheme

- > Simulates the conversion of
 - \bullet SO₂ \rightarrow SO₄
 - \bullet NO_X \rightarrow HNO₃: NO₃
- > Conversion of both is dependant on
 - Relative Humidity,
 - Background ozone, and
 - Background ammonia
- > Does not include aqueous phase transformation
- > Does not treat NO and NO₂ separately (assumes immediate conversion to NO₂)

Ozone and NH₃ Data

> Background concentrations affect chemical transformation of primary into secondary pollutants

$$SO_2(g) \xrightarrow[\text{photochemical oxidants}]{\text{cloud droplets}} SO_4(s)$$

$$NO(g) + NO_2(g) \xrightarrow{\text{photochemical oxidants}} HNO_3 \Leftrightarrow_{NH_3} NO_3(s)$$

Data options

- Constant background based on land use type
- Monitored background (rural only?)
- > Photochemical model output

Data used:

- > 80 ppb constant ozone (default)
- > 0.5 ppb constant ammonia (forest landuse)

Deposition Mechanisms

Dry Deposition

- > Resistance deposition model. For gases (SO₂) applies:
 - Pollutant diffusivity (cm/s)
 - Aqueous phase dissociation constant, α
 - Pollutant reactivity
 - Mesophyll resistance, r. (s/cm)
 - Henry's Law coefficient, H (dimensionless)

For particles (SO₄), applies:

 Diameter mean and Standard Deviation

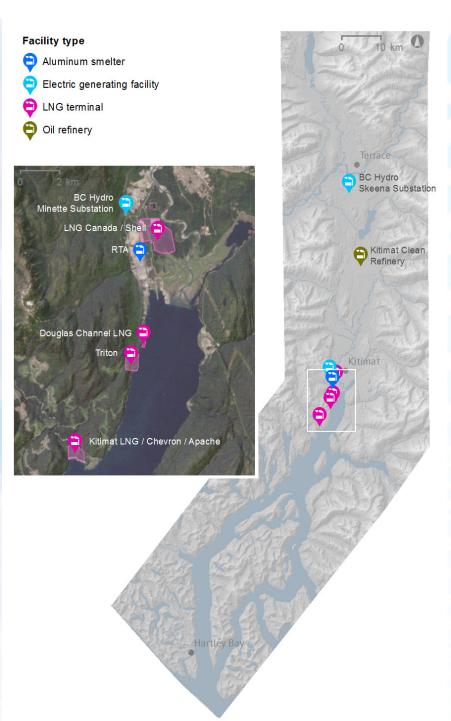
Wet Deposition

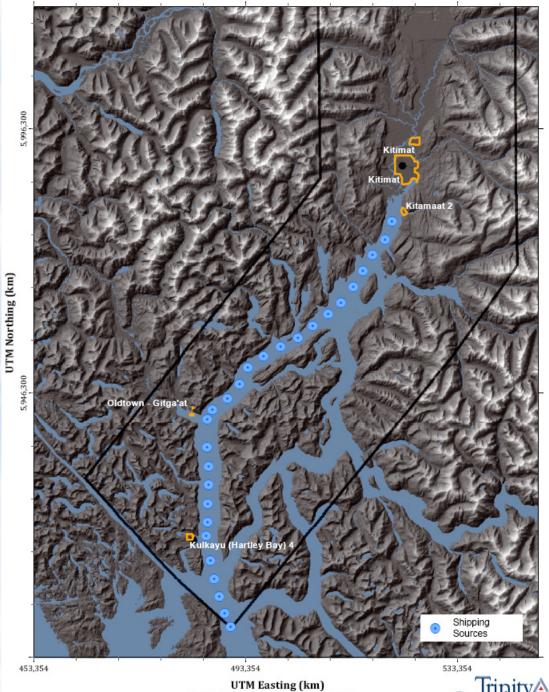
- Scavenging Coefficients Liquid:
 - ❖ 3.0E-5 for SO₂
 - 10.0E-5 for SO₄

Frozen:

- 0.0 for SO₂
- ❖ 3.0E-5 for SO₄

Kitimat Airshed Effects Assessment Example

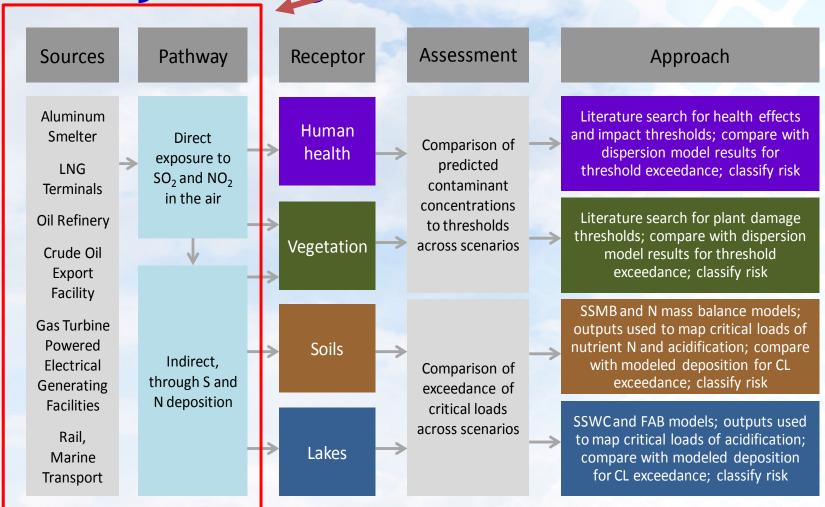

Study Area



Stationary Emission Sources **Assessed** ESSA 35

Marine Transport Model Sources

All Coordinates shown in UTM Coordinates, Zone 9N, NAD 27 Datum



Risk Framework

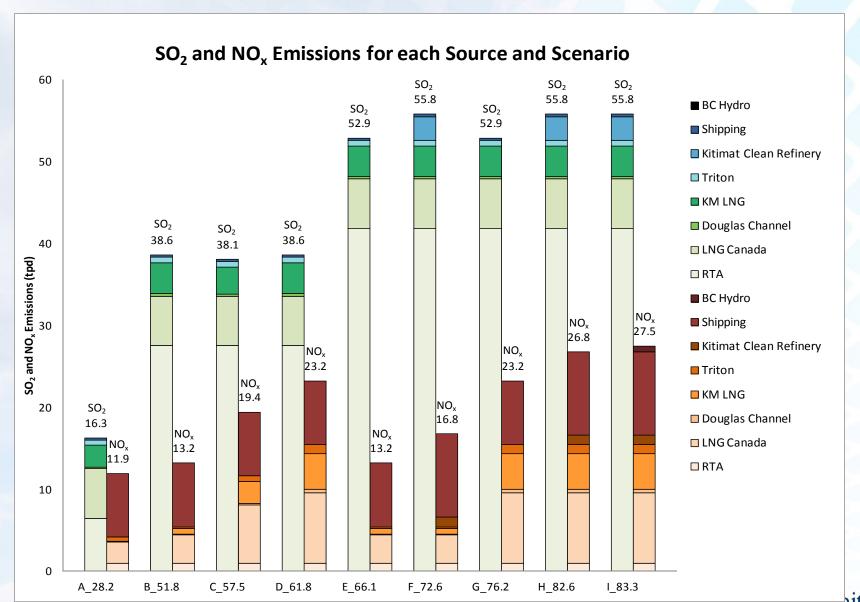
Low	No, or negligible, impact
Moderate	 Impact expected, but of a magnitude, frequency, or spatial extent, or in locations, considered to be acceptable*
High	 Impact of a magnitude, frequency or spatial extent, or in locations, considered to be not acceptable*; further investigation needed of assessment assumptions to determine if reducing uncertainties / refining inputs lowers impact category
Critical	 Impact of a magnitude, frequency or spatial extent, or in locations, considered to be extremely unacceptable*; further investigation could be made into assumptions (as above) but unlikely to reduce impact sufficiently to be considered acceptable.

^{* &}quot;acceptability", based on QP's best professional judgement and on conventions followed elsewhere. Acceptability depends on values, and is ultimately a policy decision *informed* by this assessment.

Study Design Emissions and Atmospheric Pathways

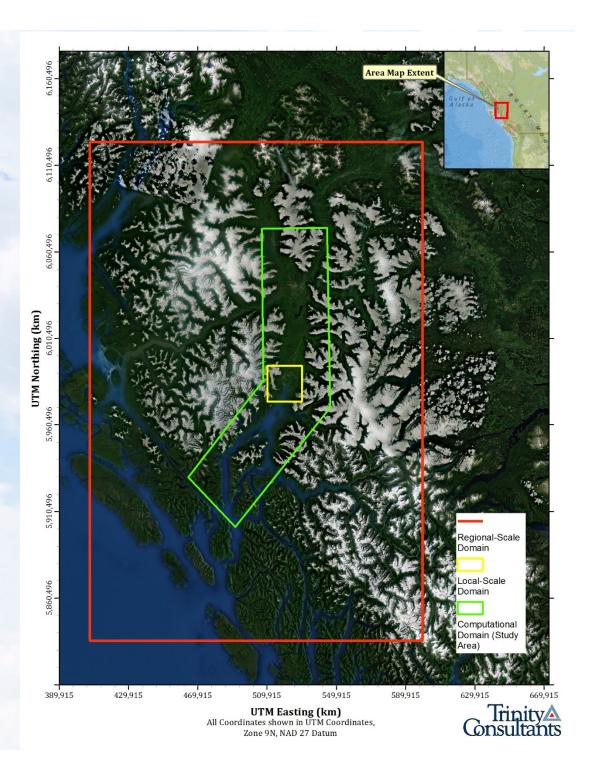
Scenarios

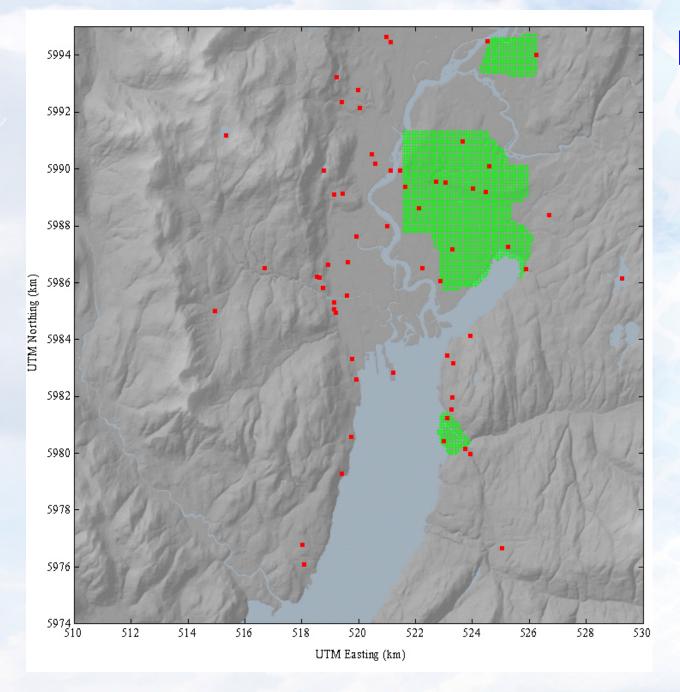
	Smelter	SO ₂	NO _x	LNG	SO ₂	NO _x	Refinery	SO ₂	NO _x	Shipping	SO ₂	NO _x	Total SO ₂	Total NO _x
Scenario		t/d	t/d		t/d	t/d		t/d	t/d		t/d	t/d	t/d	t/d
A_28.2	Full Treatment	6.5	1.0	All Electric Drive	9.6	3.2	Off	1	-	Smelter +LNG	0.2	7.8	16.3	11.9
B_51.8	Partial Treatment	27.5	1.0	Base Case- NO _x treatment	10.8	4.4	Off	1	-	Smelter +LNG	0.2	7.8	38.6	13.2
C_57.5	Partial Treatment	27.5	1.0	Mixed 60/40	10.3	10.7	Off	1	-	Smelter +LNG	0.2	7.8	38.1	19.4
D_61.8	Partial Treatment	27.5	1.0	Base Case	10.8	14.5	Off	-	-	Smelter +LNG	0.2	7.8	38.6	23.2
E_66.1	Base Case	41.8	1.0	Base Case- NO _x treatment	10.8	4.4	Off	1	1	Smelter +LNG	0.2	7.8	52.9	13.2
F_72.6	Base Case	41.8	1.0	Base Case- NO _x treatment	10.8	4.4	On	2.9	1.1	Smelter +LNG + Refinery	0.3	10.2	55.8	16.8
G_76.2	Base Case	41.8	1.0	Base Case	10.8	14.5	Off	ı	-	Smelter +LNG	0.2	7.8	52.9	23.2
H_82.6	Base Case	41.8	1.0	Base Case	10.8	14.5	On	2.9	1.1	Smelter +LNG + Refinery	0.3	10.2	55.8	26.8



BC Hydro Scenarios

Scenario	Smelter, LNG, Refinery and Shipping	SO ₂	NO _x	BC Hydro	SO ₂	NO _x	Total SO ₂	Total NO _x
ls_83.3	As for Scenario H_82.6	55.8	26.8	Skeena	3.84E-06	0.69	55.81	27.49
lm_83.3	As for Scenario H_82.6	55.8	26.8	Minette	3.84E-06	0.69	55.81	27.49





Meteorological and Computational Modeling Domains

Residential and Individual Receptors in Near Grid

Red = All individual receptors (soils, lakes, and points of interest)

Green =residential receptors

5960 5940 5920 5900 480 UTM Easting (km)

Receptors within Study Area

Red = All individual receptors (soils, lakes, and points of interest)

Green =residential receptors

Blue = grid receptors

Emission Source Data Basis & Uncertainty

- > Smelter (RTA): Directly from proponent, final design
- > Kitimat LNG: Directly from proponent, preliminary/intermediate design phase
- > LNG Canada: Directly from proponent with exception of layout (based on Kitimat LNG), preliminary/intermediate design phase
- > Douglas Channel: Directly from proponent, preliminary design phase
- > Triton: Estimated based on Douglas Channel and Kitimat LNG Refinery: Directly from proponent, preliminary design phase
- Shipping: Calculated by Trinity based on emission factors provided by BCMOE and U.S. EPA calculation procedures
- » BC Hydro: Emission rates provided directly by BC Hydro, stack parameters estimated based on similar facility

Uncertainty Legend

Dark green = very low Light orange = low/moderate Red = high Light green = low Dark orange = moderate

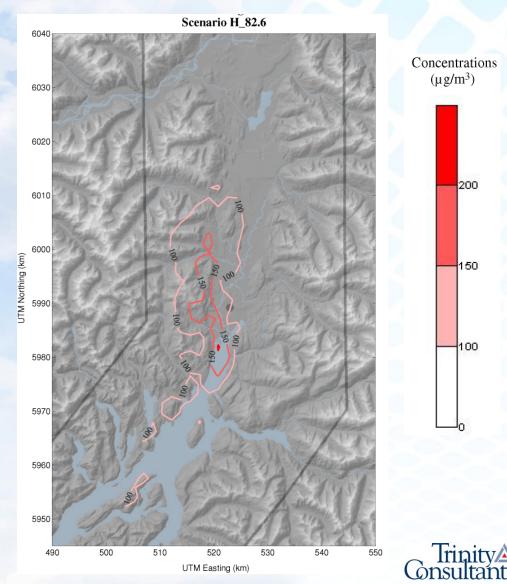
Key Emission Source Data Assumptions

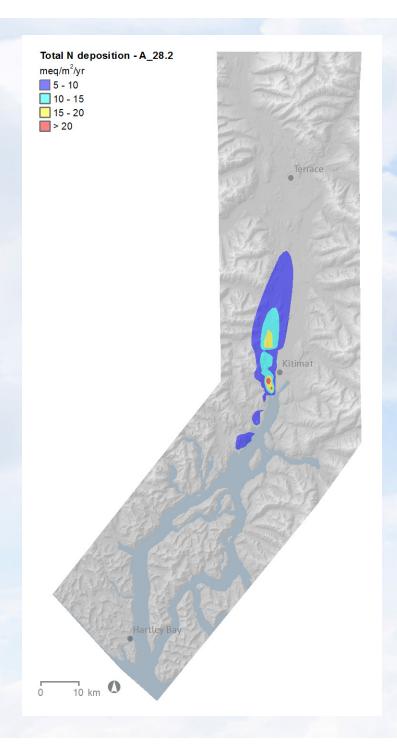
- Model assumes 24-7 operation at full capacity
- No buildings included for all sources other than RTA
- > Sulphur content of feed gas can greatly affect SO₂ emission rates
- > Stack parameters based on preliminary estimates for all preliminary/intermediate design

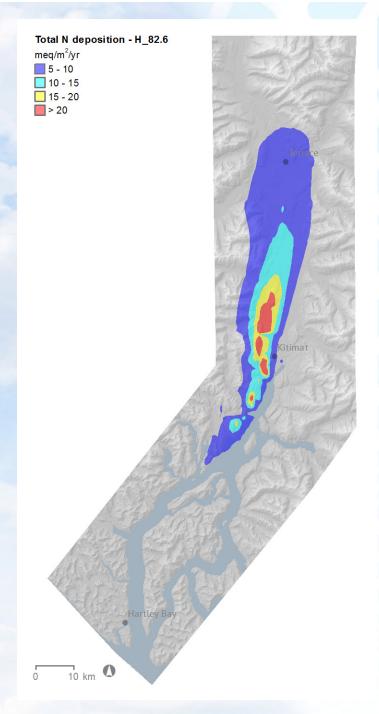
Model Results Processing NO₂/NO_x Ratio

- Modelled NO_x concentrations scaled based on US EPA guidance:
 - Assume 80% of NO_x is NO₂, for short term averaging periods (1 hour)
 - Assume 75% of NO_x is NO₂, for long term averaging periods (annual)

Model Results Scenario A to H, NO_x Comparison


- > Rio Tinto Alcan Full Treatment (1.0 tpd)
- Liquefied Natural Gas Facilities All Electric (3.2 tpd)
- No Refinery (0 tpd)
- > Shipping (7.8 tpd)

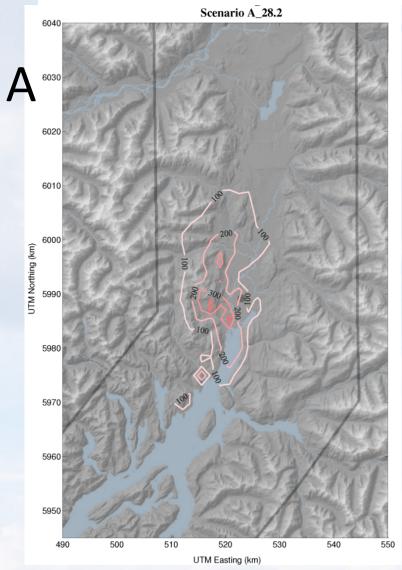

- > Rio Tinto Alcan Base Case (1.0 tpd)
- Liquefied Natural Gas Facilities Base Case (14.5 tpd)
- > Refinery Included (1.1 tpd)
- > Shipping (10.2 tpd)

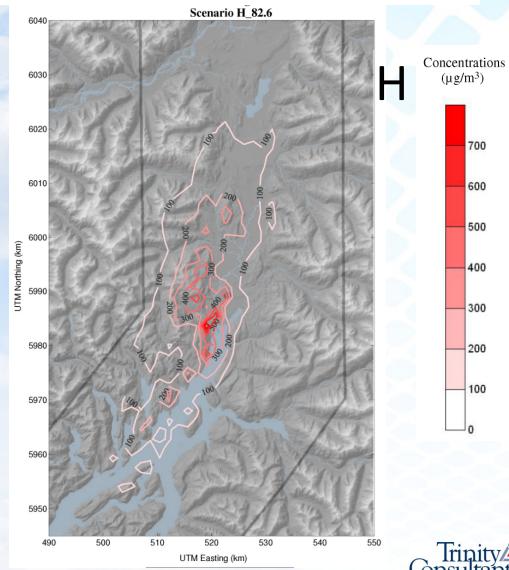


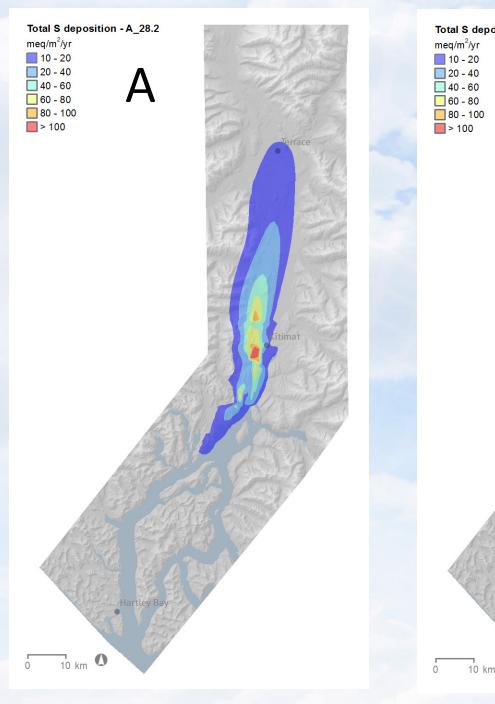
98th Percentile 1 hour NO₂ Concentration Scenario A_28.2 vs Scenario H_82.6

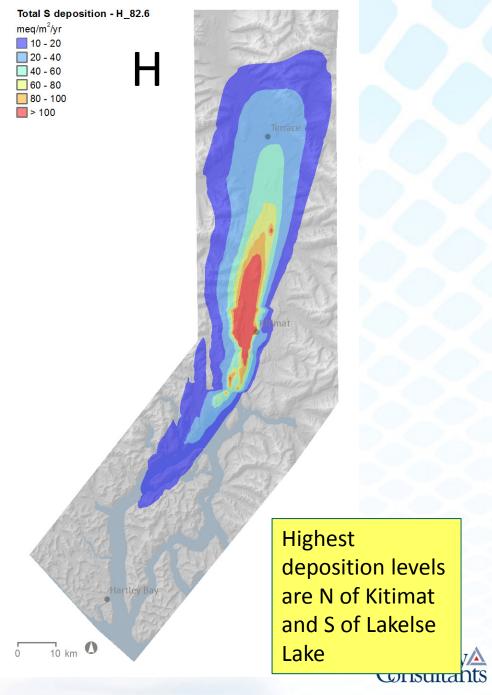
Scenario A to H, SO₂ Comparison

- > Rio Tinto Alcan Full Treatment (6.5 tpd)
- Liquefied Natural Gas

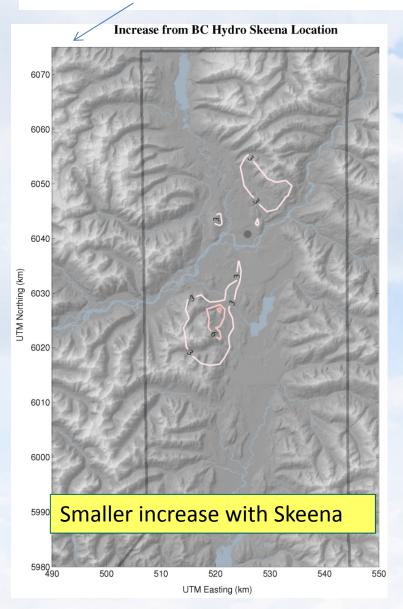

 Facilities All Electric (9.6
 tpd)
- No Refinery (0 tpd)
- > Shipping (0.2 tpd)

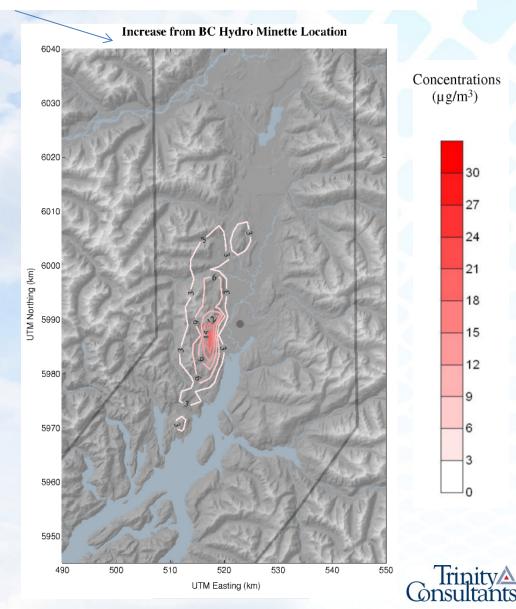

- > Rio Tinto Alcan Base Case (41.8 tpd)
- Liquefied Natural GasFacilities Base Case(10.8 tpd)
- > Refinery Included (2.9 tpd)
- > Shipping (0.3 tpd)


Scenario SO2 concentrations: [A] < [B \cong C \cong D] < [E \cong F \cong G \cong H \cong I]



99th Percentile 1 hour SO₂ Concentration Scenario A_28.2 vs Scenario H_82.6





BC Hydro Siting Exercise with SCR Skeena vs Minette [Increase in NO2]

Translating lessons learned to permit modelling

Model Results

- > Overall changes to emissions ≠ linear changes to modelled concentrations/deposition rates
 - Particularly true for 1-hour
- > Need to look at contribution
 - Focus on highest contributing sources
- > Also review assumptions
 - ♦ NO to NO₂ conversion
 - Sulphur content in fuel or feed

Overcoming Challenges for 1-hr SO₂ & NO₂

- Evaluate costs of modeling improvements
 - For example, new stack/ht change, necking stack, emissions controls, multiple scenario modeling, fenceline, property purchase
- ► For NO₂, implement NO to NO₂ Conversion
 - Nov. 2015 update to BC AQ Modelling Guideline included specific techniques:
 - > 100% conversion. If there are exceedances, use one of three methods described next.
 - If there are adequate (at least one year) hourly NO and NO2 monitoring data, use the ambient ratio method.
 - If adequate monitoring data are not available, use the ozone limited method.
 - If AERMOD is used, apply the plume volume molar ratio method.

Overcoming Challenges for 1-hr SO₂ & NO₂

- > Focus on review on handful of exceeding receptors
- > Build relationship with agency meteorologist modeller
 - Helpful in getting the benefit of the doubt regarding the many gray areas in modeling
 - Can provide helpful suggestions
- Investigate pairing modeled concentrations & background in time
- Consider operational and scheduling limitations
 - Highest 1-hour concentration often occur at night

Questions

Anna Henolson
ahenolson@trinityconsultants.com
253-867-5600

