

CONSTRUCTION HYDROACOUSTIC MONITORING

Lessons from the field

Environmental Managers Association of BC

Marc VanderVeer Hatfield Consultants LLP

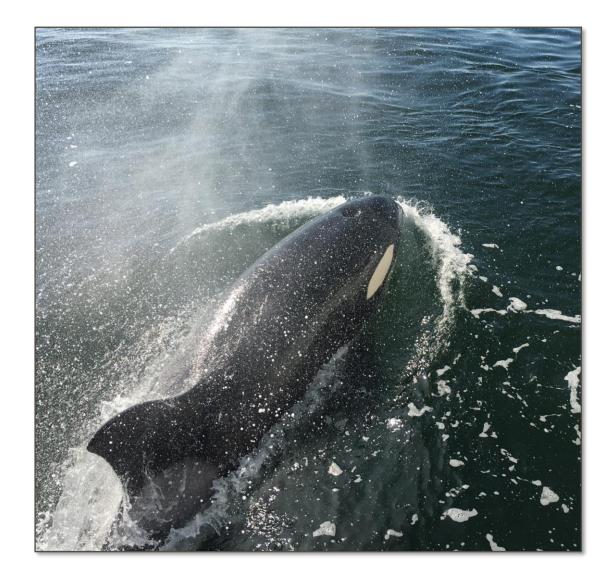
May 19, 2021

OVERVIEW

Monitoring equipment

Hydrophone deployment

Data collection and processing


Questions

KEY THEMES

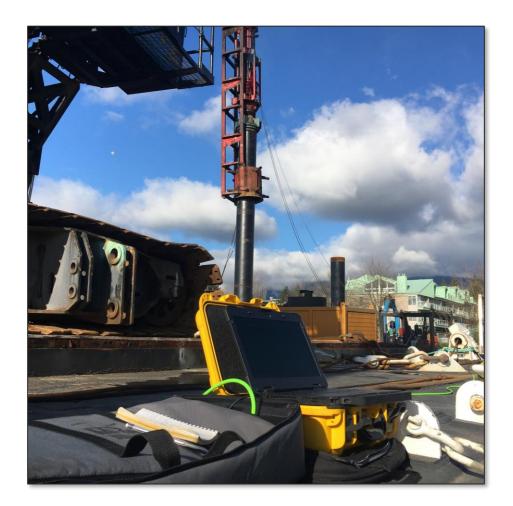
- Hydroacoustic monitoring is critical to avoiding impacts of high-noise construction activities on fish and marine mammals.
- Hydroacoustic monitoring and compliance is a priority for regulators.
- Technical guidance is evolving, but currently limited. Differences exist in the sound thresholds presented in literature vs permit conditions. Thresholds must consider location, species and life stages of local fauna in defining an appropriate monitoring program.
- Field monitoring is often more challenging than expected.
- Knowledge sharing is crucial to effective underwater noise management and monitoring.

EQUIPMENT

4

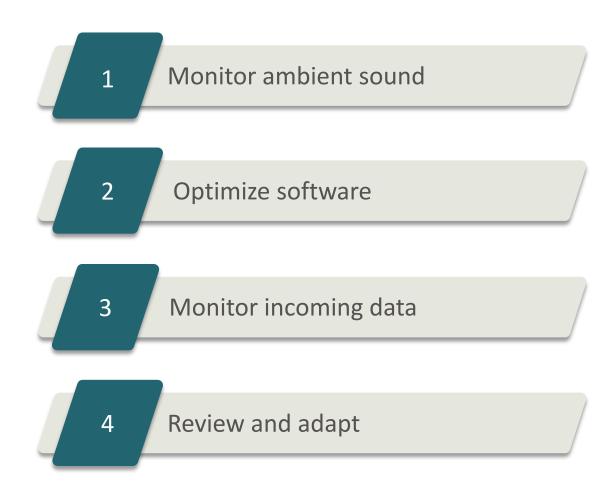
EQUIPMENT

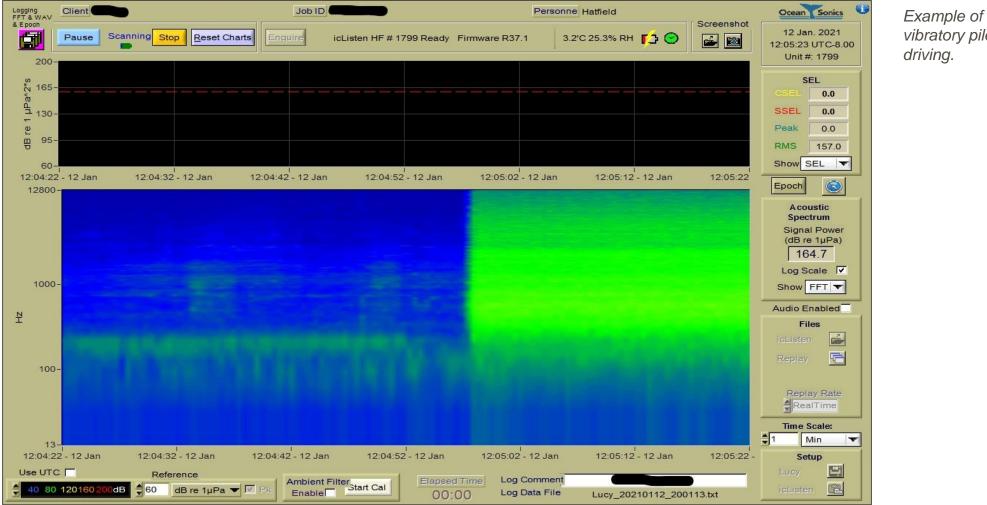
- Regulatory requirements:
 - Real time processing of Peak SPL, Cumulative SEL and RMS
- Field requirements:
 - Rugged Able to withstand field conditions
 - User friendly Reliable, portable, easy to use and troubleshoot

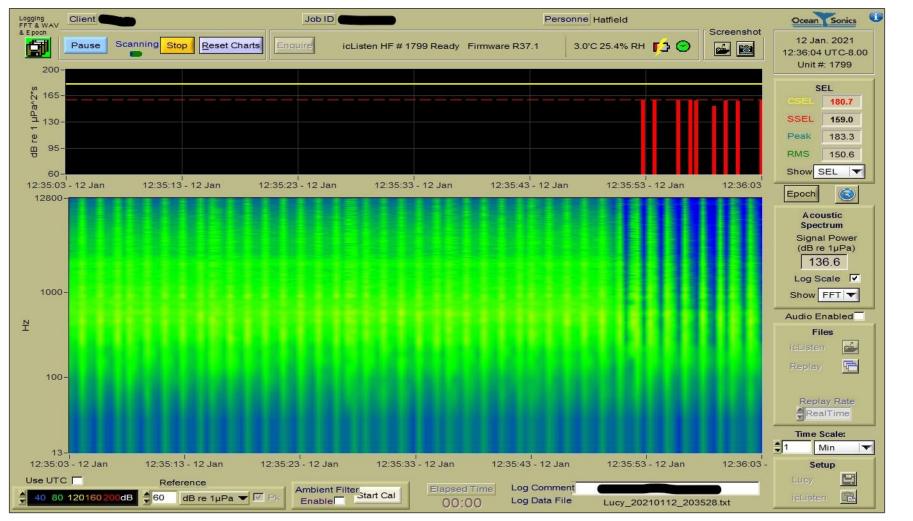


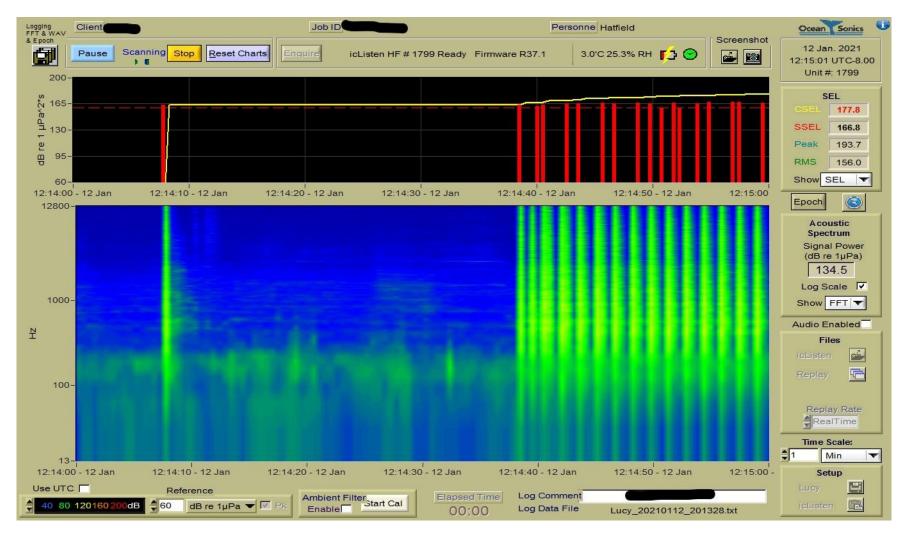
HYDROPHONE DEPLOYMENT

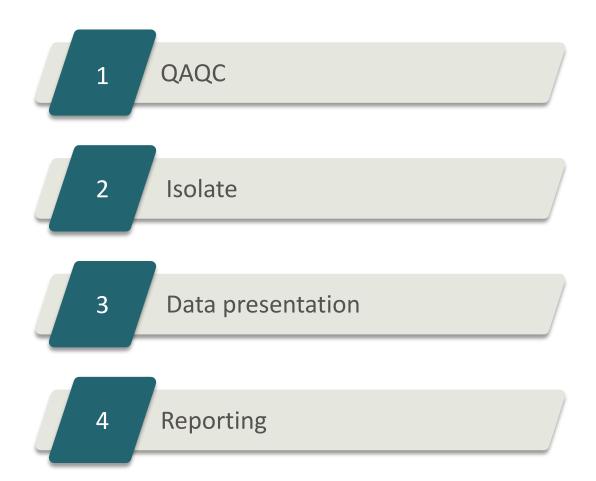
HYDROPHONE DEPLOYMENT


- Proximity and orientation to pile
- Water depth
- Deployment challenges
 - Current
 - Debris
 - Bubble curtain
 - Safety
- What works?
 - Rigid frames
 - Anchor lines

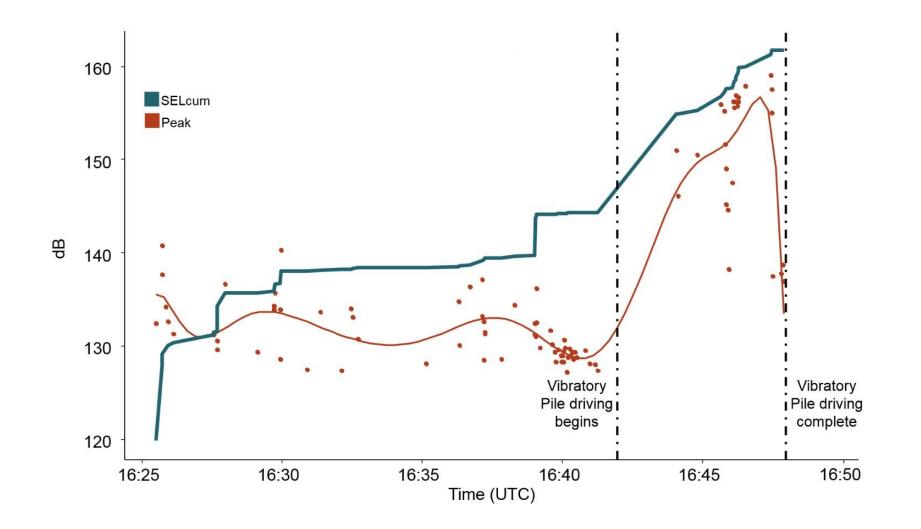



DATA COLLECTION AND PROCESSING

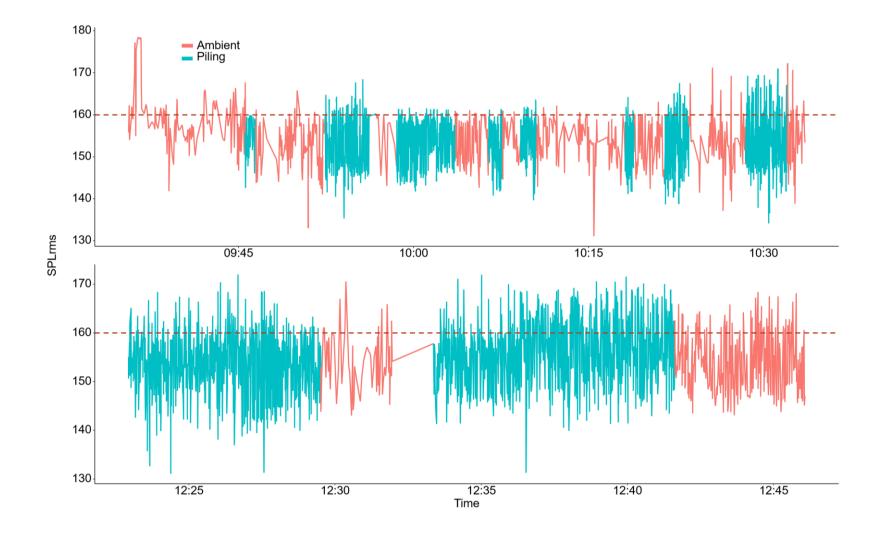



vibratory pile driving.

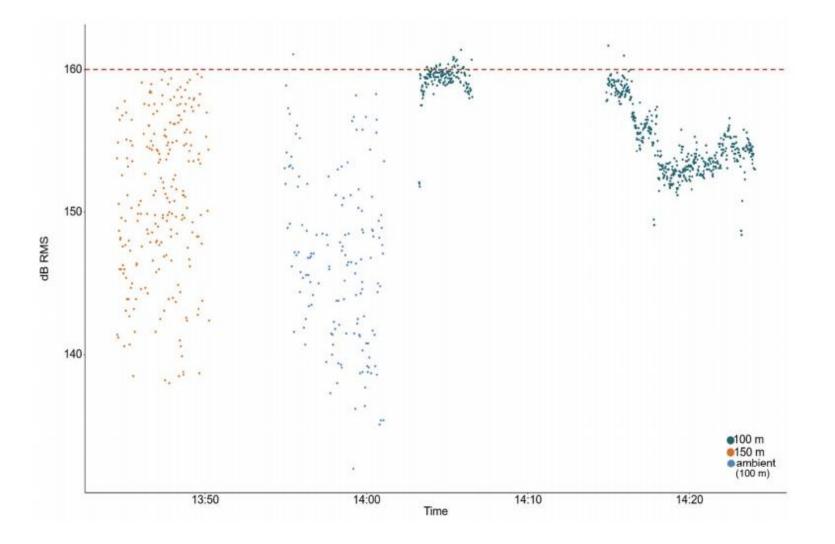
Example of vibratory pile driving occurring simultaneously with impact hammering.



Example of impact hammering with proper detection threshold settings.



Computer	Conta Barlas La VIENTA MIL	- VE33	di fala N		-146		Time (UTIC)	38L	Miner'	2PL/mil	Past (dB)	Duration (Amplied)	Impulse
	Netal.		al fiel a fully		27		-46-4847 16-4847	10.7		1913	140.0	14.14	1.00
letting Sample	144417942		Revolution (2014) TVT line		82 60		100-10017	1.64	100	100.0	180.8	1984	1.64
			Bo Walt Pal		1 80 50		10.0018	101.0	182.1	18.1	162.4	3001	162
Invice Details			Walne Families		Figure .		10.1011	147	162.1	100.0	145.2	1007	140
Service .	ad interior off		Direites (%)				10.0010	85.7	1852	170.1	102.1	-	140
198	H000		Poer Distalative		Gene Three Dataset		10000	100.0	1612	478.8	177.5	178	1.06
(instant)	42.3.88		Assembladers		2000 Sec. 80		10-1021	995.9	181.3	178.8	142.0	1144	142
							10000	107.0	141.5	100.0	146.1	1000	148
(mar (\$175)	231	Still outs'	Different of	Name (address)	- Duration	Installed #	10 10.20	101.0	162.2	100.0	162.0	1400	+60
		Sector Sector		and heat	15 and afenti		100-0020	100.0	461.3	194.0	167.0		- 124
			Address of the local				-10-10.20	1.000	663.5	195.1	180.0	0.462	142
1010	144.8	114.4	1755	801	2001		10.022	001.4	443.4	102.8	140.0	1077	130
1.05.1	180	100.1	180.7	104.6	Dena		++ ++ ++ ++	141.0	183.0	145.0	- 100	1632	180
100.0	147.5	100.1	1.000	188.	HERE	2	10 10.20	1420	181.5	196.2	180.0	1001	1.88
100.2	102.4	101.0	1781	-	1204		10.01	(HEA)	1815	111.0	178.7	10000	182
100.00	148	100.0	175.0	-102.8	Med.	-	10-10-25	40.0	101.0	101.2	140.0	4851	100
10.00	0.48.2	126.0	+41.8	45.4	1885		10.10.20	100.7	141.0	176.2	100.0	AGUT	140
B (19) 10	148.4	122.0	181.5	was -	1764		-10-10.20	147.8	182.0	160.2	186.2	1927	144
10.1	081.7	171.0	4 754	101	270.4	14 - C	10110-227	1961.4	184.0	198.8	1424	4414	182
ALC: NO.	146.6	171.0	100.0	-	1444	11	·m-m-27	194.6	1818	The or	+67.8	1286	180
6.49×11	181.4	171.6	100	854	1415	10.0	10 0.26 (0.00)	100.4	1417	198.4	481	1254	180
44914	482-1	122+	476	-924	acas.	14	10.02	100.0	144.7	101.0	100.0	+012	188
64815	647.4	122.0	+40/0	952	1415		10.00.00	1.00	184.7	165.7	+SA/E	1536	167
1144	100.0	itter.	101	42.5	1462	12	10.00.00	198	183.6	1984	ARDIN	8404	140
1001	141.7	101.1	140.0	105.2	1005	10-	10.00	149	184.0	161.4	1884	****	1.600
8.0818	605.3	124.5	176	142.5	3846	14	10 - 60 300 10 - 60 300	140	181.0	191.5	100.0	1004	100
0.000+0	666.4	478.4	100.0	176.2	3000	10	10.00.00	149.7	161.0	101.0	147	2075	100
	546.0	178.4	-102	107.2	1628	20	10.001	1400	182.0	101.4	140.0	1440	100
0.00070	142	UR.	110.5	142.3	1000	- 20	10.00	100.0	182.0	175.0	18018	3400	1.08
a dia di	101.5	- 128	140.2	120	LAAD.	20	10.00.00	101.4	10.0	175,4	100.0	1482	170
20406	147	08	180.0	+62.7	14.85	- 28	10.00.00	100.0	TRA D	175.4	18214	10.20	100
6.0821 8.0921	628-4	-128	142.0	142.6	1400	20	100-00-08	cieff. In	184-1	1942.8	-602	1004	1.00
# (#827	1940	120.0	140.0	1001	1000	50		186.1	188.1	1953	1704	-6427	1.78
0902	601.2	1118	478	1821	0010	24	10.0.00	101.4	184.7 684.7	110.0	144.8	1000	180
+060T	494.5	172	100.0	178.5	Loope.	08	10.00.00	148	141.2	110.0	- 100	AUG	1.80
0.0620	948.4	118	194.8	188.6	1826		19.10.08	100.0	186.2	062.4	1750	1102	1.64
n (192)	148	116.4	100.0	142.2	1000	10	10.00.08	148	1842	102.4	10408	180	144
0.0020	125.4	116.4	101.0	162.4	1904		···· 0.30	1.00	184.3	115.4	14214	1.0.00	1.00
0.00.20	Talk N	110.0	10.0.0	145.5	1004	-	00 - 0.00 00 - 0.00	100.0	104.2	163.2	1952	1000	140
40528	168	178.8	138.1	142.3	1925		10.000	100.8	144.3	140	182.8	064	1.00
10021	100.7	175.8	100.0	182.1	1005	3	10.10.00	106.3	184.0	100.4	1447	10.00	1.68
100.27	104.6	1111	100.5	UNT	1.144		10.040	144.4	184.3	-141.0	1400	14.04	1.04
100 CT	1.60	1012	16A.T	186	4.728		10.0340	101.0	184.4	118.4	162.1	1000	100
a an àt	1946.1	1113	106.0	TREE	1.640		10.040	100.0	181.1	100	168/5	1000	100
8 (0) 28 8 (0) 28	100	4713	(10-4 (11-4	-962	8000		100 101 101	100.0	104.0	111.0	+62+	10.01	1.04
100.08	100.0	473.0	162.4	1000	1000		100 101.000	1008-1	184.0	0617	1161	1784	1.00
1 (B) (28)	1.60	677.0	OWNER	1801	3945	-	10-10-00	107.6	184.0	112.0	1727	400	140
100-01	11/16 K	127.4	OAL T	100	44756		101-12-24	-121.0	101.0	112.8	1203	110	1.00
n. (% 24)	1988.6	10.8	264.d.		4671	-	10.10.00	147.8	100.0	100.0	146.2	HOD!	1.00
199-52 199-52	104.8	128	1753	1001	1204	0	100.0 (100	047.8	184.6	140.0	196.2	10.01	900
100.01	100.0	100.0	100	100.0	1000	47 22	10110-012	148	101.0	+12.4	14214	-Autor	201
100.0+	148.6	10.1	482.4	145.3	1011		10110-017	918	101.0	252.1	676	1075	201
100.02	10000.0	178.4	435.2	142.0	2607	1.10	10.10.00	+ 86	100.0	125.4	18216	1407	304
100/00 100/00	1464	10.0	00.0	1427.0	1011	12 13	(methad)	100.0	484.7	114.7	182/8	1004	- 001
100.00	100.0	100.0	111.0	14214	1001	64	18+0.60	108.6	191.0	inc.	12716	2567	008
a 00/30	100.0	176.6	142.5	1004	1400	- 84	10100	1987	101.0	101.0	1000	2001	201
a del test	1988-6	124	984.6	188.7	100		100-0-0-00	100.1	101.0	116.7	186.7	1000	200
e-20-3e	1964.0	478.8	476.8	145.0	2002	1.0	100 1 2 4 5 1	100	191.0	101.2	100.0		240
a (36 (34	1954.5	194.8	1324	118.4	2005		100.000	MTR.	181.8	AND F	146.4	1000	261
+ 00 M	100.0	104.8	140.2	186.4	1.000	2	181-0-62	+48	184.0	111.3	142.0	180	242
100.00	while .	10.0	111.0	185.0	main		1810.00	140.0	191.0	081.8	ABC &	18M	248
a 001.54	1487	478-1	162.1	1.86.2	1673	43	m+2-50	180	184.0	101.4	140.4	1070	248
a colo ant	mail.e	494.0	100	100.8	1,000		100 1 2 1 2 1	100.0	100.0	100.0	100.0	1000	244
100.07	+64	49.5	CHAR	142.4	1.007	8.0	ware deduct	146	Kind In	198.4	198.4	101	247
800-07 800-07	1417	1213	141.N 1402.7	1011	1000	111 I	100.00.00	142.3	484.8	104.4	142.6	1.867	218
100.00	1995.2	-04.8	(768)	14218	100	83	100-0-03		1.64	178.8	142.0	3847	298
100.00	+44	478.8	160	100	2017		101-0-5X	100.0	1.80	952.7	147.1	-dra	- 200
- 10.00	145.2	479.8	104.9	104.0	- 6962	-04	10.000	1000.0	441.1	176.4	180.0	190	
	100.1	-176.1	175.2	101.0	0427	10	101-0-00	THERE.	485.1	101.0	196.4	1876	101
100-00													
a do al	1417 1480	104.7	172.0	102.0	0007		1012-08	100.0	445.4	106.7	140.1	+404	- 224
100-00	147 108 104.1 104.1	176.8 176.8 176.8		1011	CON CON		08-12-18 08-18-17	100.0	400.1	1114	100.1	1000	20



SUMMARY

- Guidance is limited but evolving.
- Monitoring can be challenging, but effective when done correctly.
- Hydrophone position is important, know what to look for.
- Awareness of ambient noise is crucial.
- Anticipate challenges and adapt.

QUESTIONS?

Thank you

Marc VanderVeer Environmental Specialist <u>mvanderveer@hatfieldgroup.com</u> T.: 604.926.3261 Jonathan Vallarta Principal Acoustical Consultant jvallarta@slrconsulting.com T.: 604.240.1715

